OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 833–840

Shaped pulses transported through an optical fiber in the nonlinear regime for selective excitation of two-photon transitions

Monika Pawłowska, Alexander Patas, Georg Achazi, Nona Rahmat, Fabian Weise, and Albrecht Lindinger  »View Author Affiliations

JOSA B, Vol. 29, Issue 4, pp. 833-840 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1230 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the evolution of ultrashort pulses with an antisymmetric spectral phase during propagation through an optical fiber in presence of nonlinear effects. The shaped pulses are then applied for selective excitation of nonresonant two-photon transitions. Both numerical simulations and measurements confirm that a certain class of antisymmetric phase, a π-step, remains approximately antisymmetric—and is therefore suitable for the selective excitation—even though the pulse spectrum is significantly modified by self-phase modulation. Second-harmonic generation is used as a model two-photon transition. Furthermore, the capability of generating two perpendicularly polarized subpulses with independently shaped phase is demonstrated.

© 2012 Optical Society of America

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Nonlinear Optics

Original Manuscript: July 7, 2011
Revised Manuscript: November 23, 2011
Manuscript Accepted: December 19, 2011
Published: March 30, 2012

Monika Pawłowska, Alexander Patas, Georg Achazi, Nona Rahmat, Fabian Weise, and Albrecht Lindinger, "Shaped pulses transported through an optical fiber in the nonlinear regime for selective excitation of two-photon transitions," J. Opt. Soc. Am. B 29, 833-840 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Oberthaler and R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993). [CrossRef]
  2. A. M. Larson and A. T. Yeh, “Delivery of sub-10 fs pulses for nonlinear optical microscopy by polarization-maintaining single-mode optical fiber,” Opt. Express 16, 14723–14730 (2008). [CrossRef]
  3. T. Le, G. Tempea, Z. Cheng, M. Hofer, and A. Stingl, “Routes to fiber delivery of ultra-short laser pulses in the 25 fs regime,” Opt. Express 17, 1240–1247 (2009). [CrossRef]
  4. D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999). [CrossRef]
  5. N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett. 86, 47–50 (2001). [CrossRef]
  6. I. Pastirk, J. D. Cruz, K. Walowicz, V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003). [CrossRef]
  7. J. P. Ogilvie, D. Débarre, X. Solinas, J. Martin, E. Beaurepaire, and M. Joffre, “Use of coherent control for selective two-photon fluorescence microscopy in live organisms,” Opt. Express 14, 759–766 (2006). [CrossRef]
  8. G. Labroille, R. S. Pillai, X. Solinas, C. Boudoux, N. Olivier, E. Beaurepaire, and M. Joffre, “Dispersion-based pulse shaping for multiplexed two-photon fluorescence microscopy,” Opt. Lett. 35, 3444–3446 (2010). [CrossRef]
  9. V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003). [CrossRef]
  10. D. Pestov, Y. Andegeko, V. V. Lozovoy, and M. Dantus, “Photobleaching and photoenhancement of endogenous fluorescence observed in two-photon microscopy with broadband laser sources,” J. Opt. 12, 084006 (2010). [CrossRef]
  11. K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Nonlinear optical microscopy and spectroscopy employing octave spanning pulses,” IEEE J. Sel. Top. Quantum Electron. 16, 767–780 (2010). [CrossRef]
  12. F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, “Full control of polarization and temporal shape of ultrashort laser pulses transmitted through an optical fibre,” J. Opt. 13, 075301 (2011). [CrossRef]
  13. B. Broers, L. D. Noordam, and H. B. van Linden van den Heuvell, “Diffraction and focusing of spectral energy in multiphoton processes,” Phys. Rev. A 46, 2749–2756 (1992). [CrossRef]
  14. D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998). [CrossRef]
  15. P. Wnuk and C. Radzewicz, “Coherent control and dark pulses in second harmonic generation,” Opt. Commun. 272, 496–502 (2007). [CrossRef]
  16. G. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  17. F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, “Parametrically phase-, amplitude-, and polarization-shaped femtosecond laser pulses guided via a step-index fiber,” J. Opt. Soc. Am. B 28, 406–415 (2011). [CrossRef]
  18. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990). [CrossRef]
  19. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000). [CrossRef]
  20. B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: Considerations for quantum control,” Phys. Rev. A 77, 043416 (2008). [CrossRef]
  21. F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009). [CrossRef]
  22. D. J. McCabe, D. R. Austin, A. Tajalli, S. Weber, I. A. Walmsley, and B. Chatel, “Space-time coupling of shaped ultrafast ultraviolet pulses from an acousto-optic programmable dispersive filter,” J. Opt. Soc. Am. B 28, 58–64 (2011). [CrossRef]
  23. P. Panek and A. Becker, “Dark pulses for resonant two-photon transitions,” Phys. Rev. A 74, 023408 (2006). [CrossRef]
  24. J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6 fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22, 1344–1346 (1997). [CrossRef]
  25. B. Schmidt, M. Hacker, G. Stobrawa, and T. Feurer, “Lab2-a virtual femtosecond laser lab,” http://www.lab2.de .
  26. S. Santran, L. Canioni, L. Sarger, T. Cardinal, and E. Fargin, “Precise and absolute measurements of the complex third-order optical susceptibility,” J. Opt. Soc. Am. B 21, 2180–2190 (2004). [CrossRef]
  27. T. Yasui, Y. Tohno, and T. Araki, “Determination of collagen fiber orientation in human tissue by use of polarization measurement of molecular second-harmonic-generation light,” Appl. Opt. 43, 2861–2867 (2004). [CrossRef]
  28. S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photon. 3, 205–271 (2011). [CrossRef]
  29. L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007). [CrossRef]
  30. S. Thomas, A. Malacarne, F. Fresi, L. Potì, A. Bogoni, and J. Azaña, “Programmable fiber-based picosecond optical pulse shaper using time-domain binary phase-only linear filtering,” Opt. Lett. 34, 545–547 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited