OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 841–846

Scheme for implementing W state, Greenberger–Horne–Zeilinger state, and cluster state via cavity-assisted interaction

Bao-Long Fang and Liu Ye  »View Author Affiliations

JOSA B, Vol. 29, Issue 4, pp. 841-846 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (213 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a proposal for preparing the entanglement state among four trapped atoms via cavity-assisted interaction. In this scheme, a basic architecture will be built to produce the entangled state of four remote atoms. By adjusting a series of parameters and taking the single-photon pulses measurement, the architecture can realize the W state, the Greenberger–Horne–Zeilinger state, and the cluster state. Further, this scheme is insensitive to variation of the atom–photon coupling rate.

© 2012 Optical Society of America

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(270.5580) Quantum optics : Quantum electrodynamics
(230.4555) Optical devices : Coupled resonators
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Atomic and Molecular Physics

Original Manuscript: August 10, 2011
Revised Manuscript: October 18, 2011
Manuscript Accepted: November 7, 2011
Published: March 30, 2012

Bao-Long Fang and Liu Ye, "Scheme for implementing W state, Greenberger–Horne–Zeilinger state, and cluster state via cavity-assisted interaction," J. Opt. Soc. Am. B 29, 841-846 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990). [CrossRef]
  2. A. Sen, U. Sen, M. Wieśniak, D. Kaszlikowski, and M. Żukowski, “Multiqubit W states lead to stronger nonclassicality than Greenberger–Horne–Zeilinger states,” Phys. Rev. A 68, 062306 (2003). [CrossRef]
  3. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  4. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
  5. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  6. V. Scarani and N. Gisin, “Quantum communication between N partners and Bell’s inequalities,” Phys. Rev. Lett. 87, 117901 (2001). [CrossRef]
  7. G. A. Durkin, C. Simon, and D. Bouwmeester, “Multiphoton entanglement concentration and quantum cryptography,” Phys. Rev. Lett. 88, 187902 (2002). [CrossRef]
  8. J. Kempe, “Multiparticle entanglement and its applications to cryptography,” Phys. Rev. A 60, 910–916 (1999). [CrossRef]
  9. M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999). [CrossRef]
  10. R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999). [CrossRef]
  11. R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001). [CrossRef]
  12. Y. Xia, J. Song, P. M. Lu, and H. S. Song, “Preparation of Greenberger–Horne–Zeilinger and W states of three atoms trapped in one cavity through cavity output process,” Opt. Commun. 284, 1094–1098 (2011). [CrossRef]
  13. L. F. Wei, Y.-X. Liu, and F. Nori, “Generation and control of Greenberger–Horne–Zeilinger entanglement in superconducting circuits,” Phys. Rev. Lett. 96, 246803 (2006). [CrossRef]
  14. C.-P. Yang and S. Han, “Preparation of Greenberger–Horne–Zeilinger entangled states with multiple superconducting quantum-interference device qubits or atoms in cavity QED,” Phys. Rev. A 70, 062323 (2004). [CrossRef]
  15. J. Lee, S.-W. Lee, and M. S. Kim, “Greenberger–Horne–Zeilinger nonlocality in arbitrary even dimensions,” Phys. Rev. A 73, 032316 (2006). [CrossRef]
  16. F. Bodoky and M. Blaauboer, “Production of multipartite entanglement for electron spins in quantum dots,” Phys. Rev. A 76, 052309 (2007). [CrossRef]
  17. D. Gontcedila, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger–Horne–Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A 77, 062312 (2008). [CrossRef]
  18. L. Jin and Z. Song, “Generation of Greenberger–Horne–Zeilinger and W states for stationary qubits in a spin network via resonance scattering,” Phys. Rev. A 79, 042341 (2009). [CrossRef]
  19. L. Chen and W. She, “Spin-orbit-path hybrid Greenberger–Horne–Zeilinger entanglement and open-destination teleportation with multiple degrees of freedom,” Phys. Rev. A 83, 032305 (2011). [CrossRef]
  20. X. Peng, J. Zhang, J. Du, and D. Suter, “Ground-state entanglement in a system with many-body interactions,” Phys. Rev. A 81, 042327 (2010). [CrossRef]
  21. C.-Y. Lu, T. Yang, and J.-W. Pan, “Experimental multiparticle entanglement swapping for quantum networking,” Phys. Rev. Lett. 103, 020501 (2009). [CrossRef]
  22. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005). [CrossRef]
  23. W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–335 (2010). [CrossRef]
  24. C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007). [CrossRef]
  25. D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature 438, 639–642 (2005). [CrossRef]
  26. A.-N. Zhang, C.-Y. Lu, X.-Q. Zhou, Y.-A. Chen, Z. Zhao, T. Yang, and J.-W. Pan, “Experimental construction of optical multiqubit cluster states from Bell states,” Phys. Rev. A 73, 022330 (2006). [CrossRef]
  27. R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, and A. Cabello, “Experimental entanglement and nonlocality of a two-photon six-qubit cluster state,” Phys. Rev. Lett. 103, 160401 (2009). [CrossRef]
  28. W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and H. Weinfurter, “Experimental entanglement of a six-photon symmetric Dicke state,” Phys. Rev. Lett. 103, 020504 (2009). [CrossRef]
  29. J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320, 1734–1738 (2008). [CrossRef]
  30. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001). [CrossRef]
  31. K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010). [CrossRef]
  32. B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. Mücke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009). [CrossRef]
  33. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008). [CrossRef]
  34. A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007). [CrossRef]
  35. T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102, 083601 (2009). [CrossRef]
  36. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Normal-mode spectroscopy of a single-bound-atom-cavity system,” Phys. Rev. Lett. 94, 033002 (2005). [CrossRef]
  37. A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity,” Phys. Rev. Lett. 97, 083602 (2006). [CrossRef]
  38. R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010). [CrossRef]
  39. J. Cho and H.-W. Lee, “Generation of atomic cluster states through the cavity input–output process,” Phys. Rev. Lett. 95, 160501 (2005). [CrossRef]
  40. Z. J. Deng, M. Feng, and K. L. Gao, “Preparation of entangled states of four remote atomic qubits in decoherence-free subspace,” Phys. Rev. A 75, 024302 (2007). [CrossRef]
  41. J. Lee, J. Park, S. M. Lee, H.-W. Lee, and A. H. Khosa, “Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields,” Phys. Rev. A 77, 032327 (2008). [CrossRef]
  42. X.-M. Lin, P. Xue, M.-Y. Chen, Z.-H. Chen, and X.-H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input–output process,” Phys. Rev. A 74, 052339 (2006). [CrossRef]
  43. Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004). [CrossRef]
  44. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004). [CrossRef]
  45. W. Rosenfeld, F. Hocke, F. Henkel, M. Krug, J. Volz, M. Weber, and H. Weinfurter, “Towards long-distance atom–photon entanglement,” Phys. Rev. Lett. 101, 260403 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited