OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 1012–1019

Dispersion relations in metal nanoparticle chains: necessity of the multipole approach

Brice Rolly, Nicolas Bonod, and Brian Stout  »View Author Affiliations

JOSA B, Vol. 29, Issue 5, pp. 1012-1019 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (341 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Lorenz–Mie multiple-scattering theory is used to perform semi-analytical calculations of the lossy dispersion relations of propagating modes in infinite chains of metallic spheres. Lossy modes are described by allowing the projection of the wavevector along the chain axis to be a complex number rather than the more common complex frequency description. We show that even when the constituent particles are much smaller than the wavelength, one generally needs to go well beyond the coupled dipole approximation to achieve stable predictions.

© 2012 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.5420) Optics at surfaces : Polaritons
(290.4020) Scattering : Mie theory
(290.4210) Scattering : Multiple scattering
(250.5403) Optoelectronics : Plasmonics
(290.5825) Scattering : Scattering theory

ToC Category:

Original Manuscript: December 13, 2011
Manuscript Accepted: January 30, 2012
Published: April 20, 2012

Brice Rolly, Nicolas Bonod, and Brian Stout, "Dispersion relations in metal nanoparticle chains: necessity of the multipole approach," J. Opt. Soc. Am. B 29, 1012-1019 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998). [CrossRef]
  2. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000). [CrossRef]
  3. D. S. Citrin, “Coherent excitation transport in metal-nanoparticle chains,” Nano Lett. 4, 1561–1565 (2004). [CrossRef]
  4. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004). [CrossRef]
  5. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006). [CrossRef]
  6. M. Laroche, S. Albaladejo, R. Gómez-Medina, and J. J. Senz, “Tuning the optical response of nanocylinder arrays: an analytical study” Phys. Rev. B 74, 245422 (2006). [CrossRef]
  7. M. Conforti and M. Guasoni, “Dispersive properties of linear chains of lossy metal nanoparticles,” J. Opt. Soc. Am. B 27, 1576–1582 (2010). [CrossRef]
  8. S. M. Raeis, Z. Bajestani, M. Shahabadi, and N. Talebi, “Analysis of plasmon propagation along a chain of metal nanospheres using the generalized multipole technique,” J. Opt. Soc. Am. B 28, 937–943 (2011). [CrossRef]
  9. B. Stout, A. Devilez, B. Rolly, and N. Bonod, “Multipole methods for nanoantennas design: applications to Yagi-Uda configurations,” J. Opt. Soc. Am. B 28, 1213–1223 (2011). [CrossRef]
  10. I. B. Udagedara, I. D. Rukhlenko, and M. Premaratne, “Complex omega approach versus complex-k approach,” Phys. Rev. B 83, 115451 (2011). [CrossRef]
  11. A. Andrea and E. Nader, “Guided propagation along quadrupolar chains of plasmonic nanoparticles,” Phys. Rev. B 79, 235412 (2009). [CrossRef]
  12. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  13. W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989). [CrossRef]
  14. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  15. I. Abramowitz and M. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972).
  16. C. M. Linton and I. Thompson, “One- and two-dimensional lattice sums for the three-dimensional Helmholtz equation,” J. Comput. Phys. 228, 1815–1829 (2009). [CrossRef]
  17. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley1985).
  18. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1990).
  19. B. Stout, J. Auger, and A. Devilez, “Recursive T matrix algorithm for resonant multiple scattering: applications to localized plasmon excitations,” J. Opt. Soc. Am. A 25, 2549–2557(2008). [CrossRef]
  20. G. Mie, “Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen,” Ann. Phys. 330, 377–445 (1908). [CrossRef]
  21. B. Stout, J.-C. Auger, and J. Lafait, “A transfer matrix approach to local field calculations in multiple scattering problems,” J. Mod. Opt. 49, 2129–2152 (2002). [CrossRef]
  22. S. Enoch, R. C. McPhedran, N. Nicorovici, L. C. Botten, and J. N. Nixon, “Sums of spherical waves for lattices, layers and lines,” J. Math. Phys. 42, 5859–5870 (2001). [CrossRef]
  23. K. Tanabe, “Field enhancement around metal nanoparticles and nanoshells: a systematic investigation,” J. Phys. Chem. C 112, 15721–15728 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited