OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 1020–1028

Photon-number distributions of non-Gaussian states generated by photon subtraction and addition

Shuai Wang, Hong-yi Fan, and Li-yun Hu  »View Author Affiliations


JOSA B, Vol. 29, Issue 5, pp. 1020-1028 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001020


View Full Text Article

Enhanced HTML    Acrobat PDF (754 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the photon-number distributions (PND) of non-Gaussian states generated by subtracting m photons from or adding m photons to a displacement squeezed thermal state (DSTS). Compared with the PND of DSTS, PND of both m-photon-subtracted DSTS (PSDSTS) and m-photon-added DSTS (PADSTS) are modulated by a factor that is a monotonically increasing function of n, the photonnumber in the resulting non-Gaussian states. And the photon subtraction or addition essentially shifts the PND. We further demonstrate that both PND are periodic functions of the compound phase ϕθ/2 involved in complex squeezing and displacement parameters with a period π and exhibit more remarkable oscillations than that of DSTS. In the case of small squeezing and weak coherence, we investigate the negativity of Mandel’s Q parameter and the properties of PND of both PSDSTS and PADSTS. Our results indicate that generating new photon-number-controllable nonclassical states from a squeezed light with coherent component is effective by multiple-photon subtraction or addition when ϕθ/2=π/2.

© 2012 Optical Society of America

OCIS Codes
(270.5290) Quantum optics : Photon statistics
(270.6570) Quantum optics : Squeezed states

ToC Category:
Quantum Optics

History
Original Manuscript: November 22, 2011
Revised Manuscript: December 16, 2011
Manuscript Accepted: January 6, 2012
Published: April 26, 2012

Citation
Shuai Wang, Hong-yi Fan, and Li-yun Hu, "Photon-number distributions of non-Gaussian states generated by photon subtraction and addition," J. Opt. Soc. Am. B 29, 1020-1028 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-5-1020


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Dell’Anno, S. De Siena, and F. Illuminati, “Multiphoton quantum optics and quantum state engineering,” Phys. Rep. 428, 53–168 (2006). [CrossRef]
  2. J. Wenger, R. Tualle-Brouri, and P. Grangier, “Non-Gaussian statistics from individual pulses of squeezed light,” Phys. Rev. Lett. 92, 153601 (2004). [CrossRef]
  3. H. Nha and H. J. Carmichael, “Proposed test of quantum nonlocality for continuous variables,” Phys. Rev. Lett. 93, 020401 (2004).
  4. H. Takahashi, J. S. Neergaard-Nielsenl, M. Takeuchil, M. Takeokal, K. Hayasakal, A. Furusawa, and M. Sasakil, “Entanglement distillation from Gaussian input states,” Nat. Photon. 4, 178–181 (2010).
  5. G. S. Agarwal and K. Tara, “Nonclassical properties of states generated by the excitations on a coherent state,” Phys. Rev. A 43, 492–497 (1991). [CrossRef]
  6. T. Opatrny, G. Kurizki, and D.-G. Welsch, “ Improvement on teleportation of continuous variables by photon subtraction via conditional measurement,” Phys. Rev. A 61, 032302(2000). [CrossRef]
  7. P. T. Cochrane, T. C. Ralph, and G. J. Milburn, “Teleportation improvement by conditional measurements on the two-mode squeezed vacuum,” Phys. Rev. A 65, 062306 (2002). [CrossRef]
  8. S. Olivares, M. G. A. Paris, and R. Bonifacio, “Teleportation improvement by inconclusive photon subtraction,” Phys. Rev. A 67, 032314 (2003). [CrossRef]
  9. A. Kitagawa, M. Takeoka, M. Sasaki, and A. Chefles, “Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states,” Phys. Rev. A 73, 042310 (2006). [CrossRef]
  10. F. Dell’Anno, S. DeSiena, L. Albano, and F. Illuminati, “Continuous-variable quantum teleportation with non-Gaussian resources,” Phys. Rev. A 76, 022301 (2007).
  11. Y. Yang and F. L. Li, “Entanglement properties of non-Gaussian resources generated via photon subtraction and addition and continuous-variable quantum-teleportation improvement,” Phys. Rev. A 80, 022315 (2009).
  12. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and Ph. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83–86 (2006). [CrossRef]
  13. R. W. Boyd, K. W. Chan, and M. N. O’Sullivan, “Quantum weirdness in the lab,” Science 317, 1874–2007 (2007). [CrossRef]
  14. A. Zavatta, V. Parigi, M. S. Kim, H. Jeong, and M. Bellini, “Experimental demonstration of the bosonic commutation relation via superpositions of quantum operations on thermal light fields,” Phys. Rev. lett. 103, 140406 (2009). [CrossRef]
  15. M. S. Kim, “Recent developments in photon-level operations on travelling light fields,” J. Phys. B 41, 133001 (2008). [CrossRef]
  16. W. Schleich, D. F. Walls, and J. A. Wheeler, “Area of overlap and interference in phase space versus Wigner pseudoprobabilities,” Phys. Rev. A 38, 1177–1186 (1988). [CrossRef]
  17. W. Schleich and J. A. Wheeler, “Oscillations in photon distribution of squeezed states and interference in phase space,” Nature 326, 574–577 (1987). [CrossRef]
  18. W. Schleich and J. A. Wheeler, “Oscillations in photon distribution of squeezed states,” J. Opt. Soc. Am. B 4, 1715–1722 (1987). [CrossRef]
  19. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge University, 1995).
  20. M. Matsuoka and T. Hirano, “Quantum key distribution with a single photon from a squeezed coherent state,” Phys. Rev. A 67, 042307 (2003). [CrossRef]
  21. S. Wang, X. X. Xu, H. C. Yuan, L. Y. Hu, and H. Y. Fan, “Coherent operation of photon subtraction and addition for squeezed thermal states: analysis of nonclassicality and decoherence,” J. Opt. Soc. Am. B 28, 2149–2152 (2011). [CrossRef]
  22. J. Fiurrášek, R. Garcıa-Patroón, and N. J. Cerf, “Conditional generation of arbitrary single-mode quantum states of light by repeated photon subtractions,” Phys. Rev. A 72033822 (2005). [CrossRef]
  23. S. Y. Lee and H. Nha, “Quantum state engineering by a coherent superposition of photon subtraction and addition,” Phys. Rev. A 82, 053812 (2010).
  24. G. S. Agarwal and G. Adam, “Photon distributions for nonclassical fields with coherent components,” Phys. Rev. A 39, 6259–6266 (1989). [CrossRef]
  25. S. Chaturvedi and V. Srinivasan, “Photon-number distributions for fields with Gaussian Wigner functions,” Phys. Rev. A 40, 6095–6098 (1989). [CrossRef]
  26. M. S. Kim, F. A. M de Oliveira, and P. L. Knight, “Properties of squeezed number states and squeezed thermal states,” Phys. Rev. A 40, 2494–2503 (1989). [CrossRef]
  27. J. Peřina and J. Bajer, “Origin of oscillations in photon distributions of squeezed states,” Phys. Rev. A 41, 516–518 (1990). [CrossRef]
  28. P. Marian, “Higher-order squeezing and photon statistics for squeezed thermal states,” Phys. Rev. A 45, 2044–2051 (1992). [CrossRef]
  29. B. Dutta, N. Mukunda, R. Simon, and A. Subramaniam, “Squeezed states, photon-number distributions, and U(1) invariance,” J. Opt. Soc. Am. B 10, 253–264 (1993). [CrossRef]
  30. V. V. Dodonov, O. V. Man’ko, and V. I. Manko, “Photon distribution for one-mode mixed light with a generic Gaussian Wigner function,” Phys. Rev. A 49, 2993–3001 (1994). [CrossRef]
  31. L. Y. Hu, X. X. Xu, and H. Y. Fan, “Statistical properties of photon-subtracted two-mode squeezed vacuum and its decoherence in thermal environment,” J. Opt. Soc. Am. B 27, 286–299 (2010). [CrossRef]
  32. L. Y. Hu, X. X. Xu, Z. S. Wang, and X. F. Xu, “Photon-subtracted squeezed thermal state: Nonclassicality and decoherence,” Phys. Rev. A 82, 043842 (2010).
  33. H. Y. Fan, “Newton Leibniz integration for ket–bra operators in quantum mechanics and derivation of entangled state representations,” Ann. Phys. 321, 480–494 (2006). [CrossRef]
  34. H. Y. Fan, “Newton Leibniz integration for ket bra operators in quantum mechanics (IV)—Integrations within Weyl ordered product of operators and their applications,” Ann. Phys. 323, 500–526 (2008). [CrossRef]
  35. H. Y. Fan and Y. Fan “Weyl ordering for entangled state representation,” Int. J. Mod. Phys. A 17, 701–708 (2002). [CrossRef]
  36. H. Fearn and M. J. Colletta, “Representations of squeezed states with thermal noise,” J. Mod. Opt. 35, 553–564 (1988). [CrossRef]
  37. M. J. Collett, Ph.D. Thesis (University of Essex, 1987).
  38. R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963). [CrossRef]
  39. R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963). [CrossRef]
  40. H. P. Yuen, “Two-photon coherent states of the radiation field,” Phys. Rev. A 13, 2226 (1976). [CrossRef]
  41. J. C. Dainty, Current Trends in Optics (Academic, 1994), Vol. 2.
  42. W. P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, 2001).
  43. X. X. Xu, L. Y. Hu, and H. Y. Fan, “Photon-added squeezed thermal states: statistical properties and its decoherence in a photon-loss channel,” Opt. Commun. 283, 1801–1809 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited