OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 1029–1037

Efficient hyperentangled Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity

Yan Xia, Qing-Qin Chen, Jie Song, and He-Shan Song  »View Author Affiliations


JOSA B, Vol. 29, Issue 5, pp. 1029-1037 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001029


View Full Text Article

Enhanced HTML    Acrobat PDF (450 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The entangled states analysis is a very important element for quantum information. It is impossible to unambiguously distinguish the three-photon Greenberger–Horne–Zeilinger (GHZ) states in polarization, resorting to linear optical elements only. Here, we propose an efficient scheme to complete three-photon hyperentangled GHZ states analysis (HGSA) with the help of the cross-Kerr nonlinearity. The three-photon HGSA scheme can also be generalized to N-photon hyperentangled GHZ states analysis. We discuss the application of the HGSA in the quantum secure direct communication (QSDC) with polarization and spatial-mode degrees of freedom. The results show that the HGSA not only increase the channel capacity but also ensure the unconditional security in long-distance quantum communication.

© 2012 Optical Society of America

OCIS Codes
(000.6800) General : Theoretical physics
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: December 8, 2011
Revised Manuscript: January 31, 2012
Manuscript Accepted: February 9, 2012
Published: April 23, 2012

Citation
Yan Xia, Qing-Qin Chen, Jie Song, and He-Shan Song, "Efficient hyperentangled Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity," J. Opt. Soc. Am. B 29, 1029-1037 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-5-1029


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  2. G. Gordon and G. Rigolin, “Generalized teleportation protocol,” Phys. Rev. A 73, 042309 (2006).
  3. Z. J. Zhang and Z. X. Man, “Multiparty quantum secret sharing of classical messages based on entanglement swapping,” Phys. Rev. A 72, 022303 (2005).
  4. A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  5. A. D. Zhu, Y. Xia, Q. B. Fan, and S. Zhang, “Secure direct communication based on secret transmitting order of particles,” Phys. Rev. A 73, 022338 (2006).
  6. F. G. Deng and G. L. Long, “Bidirectional quantum key distribution protocol with practical faint laser pulses,” Phys. Rev. A 70, 012311 (2004).
  7. N. Gisin and S. Massar, “Optimal quantum cloning machines,” Phys. Rev. Lett. 79, 2153–2156 (1997). [CrossRef]
  8. L. Vaidman and N. Yoran, “Methods for reliable teleportation,” Phys. Rev. A 59, 116–125 (1999). [CrossRef]
  9. N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999). [CrossRef]
  10. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996). [CrossRef]
  11. J. A. W. van Houwelingen, N. Brunner, A. Beveratos, H. Zbinden, and N. Gisin, “Quantum teleportation with a three-Bell-state analyzer,” Phys. Rev. Lett. 96, 130502 (2006). [CrossRef]
  12. R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communications: quantum teleportation across the Danube,” Nature 430, 849 (2004). [CrossRef]
  13. J. Calsamiglia, “Generalized measurements by linear elements,” Phys. Rev. A 65, 030301(R) (2002). [CrossRef]
  14. P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623–R2626 (1998). [CrossRef]
  15. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005). [CrossRef]
  16. M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005). [CrossRef]
  17. G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301(R) (2009). [CrossRef]
  18. C. Wang, L. Xiao, W. Y. Wang, G. Y. Zhang, and G. L. Long, “Quantum key distribution using polarization and frequency hyperentangled photons,” J. Opt. Soc. Am. B 26, 2072–2076 (2009).
  19. L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008). [CrossRef]
  20. Y. B. Sheng, F. G. Deng, and G. L. Long, “Multipartite electronic entanglement purification with charge detection,” Phys. Lett. A 375, 396–400 (2011). [CrossRef]
  21. S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003). [CrossRef]
  22. C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006). [CrossRef]
  23. M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007). [CrossRef]
  24. J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008). [CrossRef]
  25. Y. B. Sheng, F. G. Deng, and G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010).
  26. X. M. Lin, Z. H. Chen, G. W. Lin, X. D. Chen, and B. B. Ni, “Optical Bell state and Greenberger-Horne-Zeilinger-state analyzers through the cavity input-output process,” Opt. Commun. 282, 3371–3374 (2009). [CrossRef]
  27. D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Bells Theorem, Quantum Theory, and Conceptions of the Universe, M. Kafatos, ed. (Kluwer, 1989).
  28. X. B. Zou, K. Pahlke, and W. Mathis, “Conditional generation of the Greenberger–Horne–Zeilinger state of four distant atoms via cavity decay,” Phys. Rev. A 68, 024302 (2003).
  29. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004). [CrossRef]
  30. Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger–Horne–Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
  31. Y. Xia, J. Song, P. M. Lu, and H. S. Song, “Effective quantum teleportation of an atomic state between two cavities with the cross-Kerr nonlinearity by interference of polarized photons,” J. Appl. Phys. 109, 103111 (2011).
  32. S. Ghose, N. Sinclair, S. Debnath, P. Rungta, and R. Stock, “Tripartite entanglement versus tripartite nonlocality in three-qubit Greenberger-Horne-Zeilinger-class states,” Phys. Rev. Lett. 102, 250404 (2009). [CrossRef]
  33. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004). [CrossRef]
  34. S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).
  35. G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301(R) (2009). [CrossRef]
  36. G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002). [CrossRef]
  37. F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A 68, 042317 (2003).
  38. F. G. Deng and G. L. Long, “Secure direct communication with a quantum one-time pad,” Phys. Rev. A 69, 052319 (2004). [CrossRef]
  39. Y. Xia and H. S. Song, “Controlled quantum secure direct communication using a non-symmetric quantum channel with quantum superdense coding,” Phys. Lett. A 364, 117–122 (2007). [CrossRef]
  40. X. H. Li, F. G. Deng, and H. Y. Zhou, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. A 74, 054302 (2006).
  41. C. W. Yang, C. W. Tsal, and T. Hwang, “Fault tolerant two-step quantum secure direct communication protocol against collective noises,” Sci. China-Phys. Mech. Astron. 54, 496–501 (2011). [CrossRef]
  42. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowing, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007. [CrossRef]
  43. C. Wang, Y. S. Li, and L. Hao, “Optical implementation of quantum random walks using weak cross-Kerr media,” Chin. Sci. Bull. 56, 2088–2091 (2011). [CrossRef]
  44. B. He, Q. Lin, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011).
  45. J. H. Shapiro, “Single-photon Kerr nonlinearities do not help quantum computation,” Phys. Rev. A 73, 062305 (2006).
  46. J. H. Shapiro and M. Razavi, “Continuous-time cross-phase modulation and quantum computation,” New J. Physics 9, 16 (2007). [CrossRef]
  47. J. Gea-Banacloche, “Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets,” Phys. Rev. A 81, 043823 (2010). [CrossRef]
  48. G. J. Pryde, J. L. O’Brien, A. G. White, S. D. Bartlett, and T. C. Ralph, “Measuring a photonic qubit without destroying it,” Phys. Rev. Lett. 92, 190402 (2004). [CrossRef]
  49. T. C. Ralph, S. D. Bartlett, J. L. O’Brien, G. J. Pryde, and H. M. Wiseman, “Quantum nondemolition measurements for quantum information,” Phys. Rev. A 73, 012113 (2006).
  50. G. J. Pryde, J. L. O’Brien, A. G. White, T. C. Ralph, and H. M. Wiseman, “Measurement of quantum weak values of photon polarization,” Phys. Rev. Lett. 94, 220405 (2005).
  51. J. S. Jin, C. S. Yu, and H. S. Song, “Nondestructive identification of the Bell diagonal state,” Phys. Rev. A 83, 032109 (2011).
  52. P. Kok, H. Lee, and J. P. Dowling, “Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements,” Phys. Rev. A 66, 063814 (2002). [CrossRef]
  53. H. F. Hofmann, K. Kojima, S. Takeuchi, and K. Sasaki, “Optimized phase switching using a single-atom nonlinearity,” J. Opt. B 5, 218 (2003). [CrossRef]
  54. Q. Lin, B. He, J. A. Bergou, and Y. H. Ren, “Processing multiphoton states through operation on a single photon: methods and applications,” Phys. Rev. A 80, 042311 (2009).
  55. C. Wittmann, U. L. Andersen, M. Takeoka, D. Sych, and G. Leuchs, “Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector,” Phys. Rev. A 81, 062338 (2010). [CrossRef]
  56. P. Kok, “Effects of self-phase-modulation on weak nonlinear optical quantum gates,” Phys. Rev. A 77, 013808 (2008). [CrossRef]
  57. Q. Lin and B. He, “Single-photon logic gates using minimal resources,” Phys. Rev. A 80, 042310 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited