OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 1038–1047

Role of group velocity delay in Faraday rotation in a multilayer polymer lattice

Michael Crescimanno, Guilin Mao, James H. Andrews, Kenneth D. Singer, Eric Baer, Anne Hiltner, Hyunmin Song, Kyle Comeau, Bijayandra Shakya, Aaron Bishop, and Ryan Livingston  »View Author Affiliations

JOSA B, Vol. 29, Issue 5, pp. 1038-1047 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1185 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We measure and model the spectral dependence of Faraday rotation in one-dimensional lattice structures composed of co-extruded alternating polymer layers of polymethylmethacrylate and polystyrene. We develop a theory that shows that the net Faraday rotation in a symmetric multilayer system is determined not by the total thickness of the constituent materials but by the time spent in each constituent material as measured by the overall group velocity delay of the structure and the relative energy distribution per material. We compare measured and computed Faraday rotation spectra for these films to theoretical predictions, taking into account ellipticity as well as layer thickness variations and finite spectral width detection. To measure rotations of these thin, non-magnetic, weak Faraday rotators, we constructed and optimized an apparatus capable of measuring broadband Faraday rotation spectra at 0.001° resolution for rotation angles as small as 0.002°.

© 2012 Optical Society of America

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(160.4890) Materials : Organic materials
(160.5470) Materials : Polymers
(230.2240) Optical devices : Faraday effect
(160.5293) Materials : Photonic bandgap materials

ToC Category:

Original Manuscript: November 9, 2011
Revised Manuscript: January 6, 2012
Manuscript Accepted: January 7, 2012
Published: April 24, 2012

Michael Crescimanno, Guilin Mao, James H. Andrews, Kenneth D. Singer, Eric Baer, Anne Hiltner, Hyunmin Song, Kyle Comeau, Bijayandra Shakya, Aaron Bishop, and Ryan Livingston, "Role of group velocity delay in Faraday rotation in a multilayer polymer lattice," J. Opt. Soc. Am. B 29, 1038-1047 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, 2005).
  2. C. D. Mueller, S. Nazarenko, T. Ebeling, T. L. Schuman, A. Hiltner, and E. Baer, “Novel structures by microlayer coextrusion,” Polym. Eng. Sci. 37, 355–362 (1997). [CrossRef]
  3. A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fin, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001). [CrossRef]
  4. T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun. 28, 2210–2216 (2007). [CrossRef]
  5. M. Ponting, T. M. Burt, L. T. J. Korley, J. Andrews, A. Hiltner, and E. Baer, “Gradient multilayer films by forced assembly coextrusion,” Ind. Eng. Chem. Res. 49, 12111–12118 (2010). [CrossRef]
  6. C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998). [CrossRef]
  7. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995). [CrossRef]
  8. A. Roger, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Capuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999). [CrossRef]
  9. G. Khanarian, M. A. Mortazavi, and A. J. East, “Phase-matched second-harmonic generation from free-standing periodically stacked polymer films,” Appl. Phys. Lett. 63, 1462–1464 (1993). [CrossRef]
  10. E. Baer, J. Kerns, and A. Hiltner, “Processing and properties of polymer microlayered systems,” in Structure Development During Polymer Processing, A. M. Cunha and S. Fakirov, eds. (Kluwer Academic, 2000), pp. 327–344.
  11. S. Fan, M. F. Yanik, Z. Wang, S. Sandhu, and M. L. Povinelli, “Advances in theory of photonic crystals,” J. Lightwave Technol. 24, 4493–4501 (2006). [CrossRef]
  12. H. Song, K. D. Singer, J. Lott, J. Zhou, J. H. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009). [CrossRef]
  13. R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photon. Nanostr. Fundam. Appl. 3, 116–119 (2005).
  14. V. Gasparian, M. Ortuno, J. Ruiz, and E. Cuevas, “Faraday rotation and complex-valued traversal time for classical light waves,” Phys. Rev. Lett. 75, 2312–2315 (1995). [CrossRef]
  15. P. R. Camp and R. C. Raymond, “A Photoelectric polarimeter for measurement of transient rotations,” J. Opt. Soc. Am. 42, 237–240 (1952). [CrossRef]
  16. E. H. Hwang and B. Y. Kim, “Pulsed high magnetic field sensor using polymethyl methacrylate,” Meas. Sci. Technol. 17, 2015–2021 (2006). [CrossRef]
  17. S. Muto, N. Seki, T. Suzuki, and T. Tsukamoto, “Plastic fiber optical isolator and current sensor,” Jpn. J. Appl. Phys. 31, L346–L348 (1992). [CrossRef]
  18. G. Koeckelberghs, M. Vangheluwe, K. Van Doorsselaere, E. Robijns, A. Persoons, and T. Verbiest, “Regioregularity in Poly(3-alkoxythiophene)s: Effects on the Faraday rotation and polymerization mechanism,” Macromol. Rapid Commun. 27, 1920–1925 (2006). [CrossRef]
  19. P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C 112, 8032–8037 (2008). [CrossRef]
  20. F. Araoka, M. Abe, T. Yamamoto, and H. Takezoe, “Large Faraday Rotation in a π-Conjugated Poly(arylene ethynylene) Thin Film,” Appl. Phys. Express 2, 011501–011503 (2009). [CrossRef]
  21. M. Domínguez, D. Ortega, J. S. Garitaonandía, R. Litrán, C. Barrera-Solano, E. Blanco, and M. Ramírez-del-Solar, “Magneto-optic Faraday effect in maghemite nanoparticles/silica matrix nanocomposites prepared by the Sol–Gel method,” J. Magnetism Magnetic Mat. 320, e725–e729 (2008).
  22. K. E. Gonsalves, G. Carlson, M. Benaissa, M. Jose-Yacamá, D. Y. Kim, and J. Kumar, “Magneto-optical properties of nanostructured iron,” J. Mater. Chem. 7, 703–704 (1997). [CrossRef]
  23. M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006). [CrossRef]
  24. M. J. Steel, M. Levy, and R. M. Osgood, “Large magnetooptical Kerr rotation with high reflectivity from photonic bandgap structures with defects,” J. Lightwave Technol. 18, 1289–1296 (2000). [CrossRef]
  25. M. J. Steel, M. Levy, and R. M. Osgood, “Photonic bandgaps with defects and the enhancement of Faraday rotation,” J. Lightwave Technol. 18, 1297–1308 (2000). [CrossRef]
  26. I. Abdulhalim, “Analytic propagation matrix method for anisotropic magneto-optic layered media,” J. Opt. A: Pure Appl. Opt. 2, 557–564 (2000).
  27. S. Visnovsky, K. Postava, and T. Yamaguchi, “Magneto-optic polar Kerr and Faraday effects in periodic multilayers,” Opt. Express 9, 158–171 (2001). [CrossRef]
  28. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical a magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906–3911 (2003). [CrossRef]
  29. H. Y. Ling, “Theoretical investigation of transmission through a Faraday-active Fabry-Perot etalon,” J. Opt. Soc. Am. A 11, 754–758 (1994). [CrossRef]
  30. M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83, 6768–6770 (1998). [CrossRef]
  31. S. Sakaguchi and N. Sugimoto, “Transmission properties of multilayer films composed of magneto-optical and dielectric materials,” J. Lightwave Technol. 17, 1087–1092 (1999). [CrossRef]
  32. B. Wu, F. Lui, S. Lui, and W. Huang, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett. 5, 268–272 (2009). [CrossRef]
  33. M. J. Steel, M. Levy, and R. M. Osgood, “High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects,” IEEE Photon. Technol. Lett. 12, 1171–1173 (2000). [CrossRef]
  34. V. I. Belotelov and A. K. Zvezdin, “Magneto-optical properties of photonic crystals,” J. Opt. Soc. Am. B 22, 286–292 (2005). [CrossRef]
  35. S. Kahl and A. M. Grishin, “Enhanced Faraday rotation in all-garnet magneto-optical photonic crystal,” Appl. Phys. Lett. 84, 1438–1440 (2004). [CrossRef]
  36. S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12]m magneto-optical photonic crystals,” Appl. Phys. Lett. 87, 122504(2005). [CrossRef]
  37. T. E. Bernal-Lara, A. Ranade, A. Hiltner, and E. Baer, “Nano- and microlayered polymers: Structure and Properties,” in Mechanical Properties of Polymers Based on Nanostructure, 1st ed., G. H. Micheler and F. Balta-Callaja, eds. (CRC, 2005).
  38. E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991). [CrossRef]
  39. H. Song, K. Singer, Y. Wu, J. Zhou, J. Lott, J. Andrews, A. Hiltner, E. Baer, C. Weder, R. Bunch, R. Lepkowicz, and G. Beadie, “Layered polymeric optical systems using continuous coextrusion,” Proc. SPIE 7467, 74670A (2009). [CrossRef]
  40. Y. Wu, K. Singer, R. Petschek, H. Song, E. Baer, and A. Hiltner, “Mode delocalization in 1D photonic crystal lasers,” Opt. Express 17, 18038–18043 (2009). [CrossRef]
  41. V. K. Valev, J. Wouters, and T. Verbiest, “Differential detection for measurements of Faraday rotation by means of ac magnetic fields,” J. Euro. Phys. 29, 1099–1104 (2008).
  42. See http://www.luminus.com .
  43. M. J. Weber, ed., Handbook of Optical Materials (CRC, 2003) p. 248.
  44. P. A. Williams, A. H. Rose, G. W. Day, T. E. Milner, and M. N. Deeter, “Temperature dependence of the Verdet constant in several diamagnetic glasses,” Appl. Opt. 30, 1176–1178 (1991). [CrossRef]
  45. H. C. Y. Yu, M. A. van Eijkelenborg, S. G. Leon-Saval, A. Argyros, and G. W. Barton, “Enhanced magneto-optical effect in cobalt nanoparticle-doped optical fiber,” Appl. Opt. 47, 6497–6501 (2008). [CrossRef]
  46. K. R. Heim and M. R. Scheinfein, “An alternative approach for magneto-optic calculations involving layered media,” J. Magn. Magn. Mater. 154, 141–152 (1996). [CrossRef]
  47. D. Budker, W. Gawlik, D. F. Kimball, S. F. Rochester, V. V. Yashchuk, and A. Weiss, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002). [CrossRef]
  48. P. Berman, “Optical Faraday rotation,” Am. J. Phys. 78, 270–276 (2010). [CrossRef]
  49. L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–496 (1999). [CrossRef]
  50. H. G. Winful, “Tunneling time, the Hartman effect, and superluminality: A proposed resolution of an old paradox,” Phys. Rep. 436, 1–69 (2006). [CrossRef]
  51. The reason we do not think that density of states concepts are as useful here is that the connection between time and the density of states is only direct in one dimension, whereas Eq. (3) we are claiming is general. Furthermore, it is not clear how to apportion the density of states to each constituent material as implied by tA and tB.
  52. F. E. Low and P. F. Mende, “A note on the tunneling time problem,” Ann. Phys. 210, 380–387 (1991). [CrossRef]
  53. P. C. W. Davies, “Quantum tunneling time,” Am. J. Phys. 73, 23–27 (2005). [CrossRef]
  54. A. M. Steinberg, “How much time does a tunneling particle spend in the barrier region?” Phys. Rev. Lett. 74, 2405–2409 (1995). [CrossRef]
  55. S. Visnovsky, Optics in Magnetic Multilayers and Nanostructures, Series on Optical Science and Engineering (CRC, 2006).
  56. S. E. Caudill and W. T. Grubbs, “Interferometric measurements of refractive index dispersion in polymers over the visible and near-infrared spectral range,” J. Appl. Polymer Science 100, 65–72 (2006).
  57. I. D. Nikolov and C. D. Ivanov, “Optical plastic refractive measurements in the visible and the near-infrared regions,” Appl. Opt. 39, 2067–2070 (2000). [CrossRef]
  58. Cf. C. Koerdt, “Magneto-spatial dispersion phenomena: photonic band gaps and chirality in magneto-optics,” Ph.D. thesis (University of Konstanz, 2004) https://docs.google.com/viewer?url=http://www.ub.uni-konstanz.de/kops/volltexte/2004/1376/pdf/thesis-kops.pdf&pli=1 .
  59. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited