OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 1065–1070

An intracavity frequency doubled H2 Raman laser scheme for generating narrow-linewidth yellow radiation

Jonathan Tyler Green and Leonardo Fallani  »View Author Affiliations


JOSA B, Vol. 29, Issue 5, pp. 1065-1070 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001065


View Full Text Article

Enhanced HTML    Acrobat PDF (255 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a cavity-based combined Raman and second harmonic generation scheme for generating hundreds of milliwatts of continuous-wave yellow radiation with a frequency linewidth suitable for spectroscopic applications. We suggest using H2 gas as the Raman medium in an external Raman ring resonator with an intracavity frequency doubling crystal. Using gas rather than a crystal allows for single-mode, narrow-linewidth operation suitable for many spectroscopic applications. In a specific numerical example, we predict the generation of more than 200 mW of narrow-linewidth 583 nm light from an input of 1 W of 785 nm light, which could be obtained from a low cost tapered amplifier diode system. Finally, we suggest methods for improving the laser performance.

© 2012 Optical Society of America

OCIS Codes
(140.3550) Lasers and laser optics : Lasers, Raman
(140.3560) Lasers and laser optics : Lasers, ring
(290.5910) Scattering : Scattering, stimulated Raman
(140.3515) Lasers and laser optics : Lasers, frequency doubled

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 16, 2011
Revised Manuscript: February 8, 2012
Manuscript Accepted: February 8, 2012
Published: April 30, 2012

Citation
Jonathan Tyler Green and Leonardo Fallani, "An intracavity frequency doubled H2 Raman laser scheme for generating narrow-linewidth yellow radiation," J. Opt. Soc. Am. B 29, 1065-1070 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-5-1065


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. G. Porsev, A. Derevianko, and E. N. Forston, “Possibility of an optical clock using the 61S0→P30 transition in Yb171,173 atoms held in an optical lattice,” Phys. Rev. A 69, 021403(R) (2004).
  2. H. Y. Ban, M. Jacka, J. L. Hanssen, J. Reader, and J. J. McClelland, “Laser cooling transitions in atomic erbium,” Opt. Express 13, 3185–3195 (2005). [CrossRef]
  3. W. K. Lee, C. Y. Park, D. H. Yu, S. E. Park, S. B. Lee, and T. Y. Kwon, “Generation of 578-nm yellow light over 10 mW by second harmonic generation of an 1156-nm external-cavity diode laser,” Opt. Express 19, 17453–17461 (2011). [CrossRef]
  4. E. Mimoun, L. D. Sarlo, J. J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589 nm light with near-unit efficiency,” Opt. Express 16, 18684–18691 (2008). [CrossRef]
  5. Y. F. Chen, S. W. Tsai, S. C. Wang, Y. C. Huang, T. C. Lin, and B. C. Wong, “Efficient generation of continuous-wave yellow light by single-pass sum-frequency mixing of a diode-pumped Nd: YVO4 dual-wavelength laser with periodically poled lithium niobate,” Opt. Lett. 27, 1809–1811 (2002). [CrossRef]
  6. G. Ferrari, “Generating green to red light with semiconductor lasers,” Opt. Express 15, 1672–1678 (2007). [CrossRef]
  7. K. Koch, G. T. Moore, and M. E. Dearborn, “Raman oscillation with intra-cavity second harmonic generation,” IEEE J. Quantum Electron. 33, 1743–1748 (1997). [CrossRef]
  8. H. Yu, Z. Li, A. J. Lee, J. Li, H. Zhang, J. Wang, H. Pask, J. Piper, and M. Jiang, “A continuous wave SrMoO4 Raman laser,” Opt. Lett. 36, 579–581 (2011). [CrossRef]
  9. A. J. Lee, H. Pask, J. A. Piper, H. Zhang, and J. Wang, “An intra-cavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission,” Opt. Express 18, 5984–5992 (2010). [CrossRef]
  10. R. P. Mildren, “The outlook for diamond in Raman laser applications,” Mater. Res. Soc. Symp. Proc. 1203, 1203-J13-01 (2009). [CrossRef]
  11. W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Continuous-wave diamond Raman laser,” Opt. Lett. 35, 2994–2996 (2010). [CrossRef]
  12. P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intra-cavity doubled, self-Raman laser operation in Nd: GdVO4 at 586.5 nm,” Opt. Express 15, 7038–7046(2007). [CrossRef]
  13. A. J. Lee, H. M. Pask, T. Omatsu, P. Dekker, and J. A. Piper, “All solid-state continuous-wave yellow laser based on intra-cavity frequency-doubled self-Raman laser action,” Appl. Phys. B 88, 539–544 (2007). [CrossRef]
  14. J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, “Characterization of a continuous-wave Raman laser in H2,” J. Opt. Soc. Am. B 16, 1305–1312 (1999). [CrossRef]
  15. J. C. Bienfang, W. Rudolph, P. A. Roos, L. S. Meng, and J. L. Carlsten, “Steady-state thermo-optic model of a continuous-wave Raman laser,” J. Opt. Soc. Am. B 19, 1318–1325(2002). [CrossRef]
  16. J. K. Brasseur, R. F. Teehan, P. A. Roos, B. Soucy, D. K. Neumann, and J. L. Carlsten, “High-power deuterium Raman laser at 632 nm,” J. Opt. Soc. Am. B 43, 1162–1166(2004). [CrossRef]
  17. J. T. Green, D. E. Sikes, and D. D. Yavuz, “Continuous-wave high-power rotational Raman generation in molecular deuterium,” Opt. Lett. 34, 2563–2565 (2009). [CrossRef]
  18. D. D. Yavuz, “High-frequency modulation of continuous-wave laser beams by maximally coherent molecules,” Phys. Rev. A 76, 011805(R) (2007).
  19. J. T. Green, J. J. Weber, and D. D. Yavuz, “Continuous-wave light modulation at molecular frequencies,” Phys. Rev. A 82, 011805 (2010). [CrossRef]
  20. J. J. Weber, J. T. Green, and D. D. Yavuz, “17 THz continuous-wave optical modulator,” Phys. Rev. A 85, 013805 (2012). [CrossRef]
  21. A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave self-Raman solid-state laser operating in the visible,” Opt. Express 18, 20013–20018 (2010). [CrossRef]
  22. P. A. Roos, L. S. Meng, and J. L. Carlsten, “Doppler-induced unidirectional operation of a continuous-wave Raman ring laser in H2,” Appl. Opt. 42, 5517–5521 (2003). [CrossRef]
  23. P. Lallemand, P. Simova, and G. Bret, “Pressure-induced line shift and collisional narrowing in hydrogen gas determined by stimulated Raman emission,” Phys. Rev. Lett. 17, 1239–1241(1966). [CrossRef]
  24. N. Bloembergen, “The stimulated Raman effect,” Am. J. Phys. 35, 989–1022 (1967). [CrossRef]
  25. S. E. Harris and A. V. Sokolov, “Broadband spectral generation with refractive index control,” Phys. Rev. A 55, R4019–R4022(1997). [CrossRef]
  26. A. C. Allison and A. Dalgarno, “Band oscillator strengths and transition probabilities for the Lyman and Werner systems of H2, HD, and D2,” At. Data 1, 289–304 (1969). [CrossRef]
  27. J. J. Ottusch and D. A. Rockwell, “Measurements of Raman gain coefficients in hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 24, 2076–2080 (1988). [CrossRef]
  28. W. K. Bischel and M. J. Dryer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B 3, 677–682 (1986). [CrossRef]
  29. G. D. Boyd, W. D. Johnston, and I. P. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quantum Electron. 5, 203–206 (1969). [CrossRef]
  30. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  31. W. K. Bischel and M. J. Dryer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123(1986). [CrossRef]
  32. J. T. Green, J. J. Weber, and D. D. Yavuz, “Continuous-wave, multiple-order rotational Raman generation in molecular deuterium,” Opt. Lett. 36, 897–899 (2011). [CrossRef]
  33. G. Ferrari, J. Catani, L. Fallani, G. Giusfredi, G. Schettino, F. Schäfer, and P. C. Pastor, “Coherent addition of laser beams in resonant passive optical cavities,” Opt. Lett. 35, 3105–3107 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited