OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 1071–1077

External optical feedback-induced wavelength selection and Q -switching elimination in an InAs/InGaAs passively mode-locked quantum dot laser

Charis Mesaritakis, Christos Simos, Hercules Simos, Alexandros Kapsalis, Igor Krestnikov, and Dimitris Syvridis  »View Author Affiliations

JOSA B, Vol. 29, Issue 5, pp. 1071-1077 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (884 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we present experimental results related to the dynamic switching of the emission wavelength of a passively mode-locked InAs/InGaAs quantum dot laser. The wavelength switching is achieved through application of varying optical feedback, as opposed to varying electrical biasing conditions, whereas the different regimes of operations include pulse operation either from the ground or the excited state and dual mode locking. Furthermore, through the same technique, Q -switching elimination was achieved, allowing stable pulse amplitude, which is a highly desired feature in many applications.

© 2012 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3540) Lasers and laser optics : Lasers, Q-switched
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 9, 2011
Revised Manuscript: February 17, 2012
Manuscript Accepted: February 17, 2012
Published: April 23, 2012

Charis Mesaritakis, Christos Simos, Hercules Simos, Alexandros Kapsalis, Igor Krestnikov, and Dimitris Syvridis, "External optical feedback-induced wavelength selection and Q-switching elimination in an InAs/InGaAs passively mode-locked quantum dot laser," J. Opt. Soc. Am. B 29, 1071-1077 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Shaji, K. Nakata, Y. Mukai, M. Sugiyama, N. Sugawara, N. Yokoyama, and H. Ishikawa, “Temperature dependent lasing characteristics of multi-stacked quantum dot lasers,” Appl. Phys. Lett. 71, 193 (1997). [CrossRef]
  2. O. B. Shchekin, G. Park, D. L. Huffaker, Q. Mo, and D. G. Deppe, “Low-threshold continuous-wave two-stack quantum-dot laser with reduced temperature sensitivity,” IEEE Photon. Technol. Lett. 12, 1120–1122 (2000). [CrossRef]
  3. S. Chosh, P. Pradhan, and D. Bhattacharya, “Dynamic characteristics of high-speed In0.4Ga0.6As/GaAs self-organized quantum dot lasers at room temperature,” Appl. Phys. Lett. 81, 3055 (2002). [CrossRef]
  4. W. Rui, S. F. Yoou, Z. X. Han, Z. T. Cun, L. Y. Chong, and C. Qi, “Temperature-dependent study on modal gain and differential gain of 1.3 μm InAs─GaAs QD lasers with different p-doping levels,” IEEE Photon. Technol. Lett. 22, 1045–1047 (2010). [CrossRef]
  5. G. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35, 1163–1165 (1999). [CrossRef]
  6. P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, W. Zong-Kwei, J. Urayama, K. Kyoungsik, and T. B. Norris, “Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs─GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 39, 952–962 (2003). [CrossRef]
  7. T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13, 541–543 (2001). [CrossRef]
  8. M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3 μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005). [CrossRef]
  9. F. Grillot, N. A. Naderi, J. B. Wrigth, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011). [CrossRef]
  10. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001). [CrossRef]
  11. K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vučković, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett. 98, 083105 (2011). [CrossRef]
  12. J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98, 011107 (2011). [CrossRef]
  13. T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005). [CrossRef]
  14. F. M. Guo, H. You, W. Q. Gu, D. D. Han, and Z. Q. Zhu, “Weak-light automatic readout collection and display on the resonant-cavity-enhanced quantum dot photoelectric sensor,” Proc. SPIE 8194, 81942X (2011). [CrossRef]
  15. B. C. Hsu, S. T. Chang, T. C. Chen, P. S. Kuo, P. S. Chen, Z. Pei, and C. W. Liu, “A high efficient 820 nm MOS Ge quantum dot photodetector,” IEEE Electron Device Lett. 24, 318–320 (2003). [CrossRef]
  16. L. Nevou, V. Liverini, F. Castellano, A. Bismuto, and J. Faist, “Asymmetric heterostructure for photovoltaic InAs quantum dot infrared photodetector,” Appl. Phys. Lett. 97, 023505 (2010). [CrossRef]
  17. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photon. 1, 395 (2007). [CrossRef]
  18. D. I. Nikitichev, M. Ruiz, Y. Ding, M. Tran, Y. Robert, M. Krakowski, M. Rossetti, P. Bardella, I. Montrosset, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Passively mode-locked monolithic two-section gain-guided tapered quantum-dot lasers: II. Record 15 Watt peak power generation,” The European Conference on Lasers and ElectroOptics (CLEO/Europe) Munich (Germany, 2011).
  19. R. Rosales, K. Merghem, A. Martinez, A. Ramdane, A. Accard, and F. Lelarge, “High repetition rate two-section InAs/InP quantum-dash passively mode locked lasers,” IPRM 2011-23th International Conference on Indium Phosphide and Related Materials Berlin (Germany, 2011).
  20. Z. Jiao, J. Liu, Z. Lu, P. Poole, P. Barrios, D. Poitras, and X. Zhang, “437 GHz optical pulse train generation from a C-Band InAs/InP quantum dot laser,” Optical Fiber Communication Conference (OFC) Los Angeles, (California, 2011).
  21. G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10 GHz quantum-dot laser diode,” IEEE Photon. Technol. Lett. 21, 389–391 (2009). [CrossRef]
  22. C. Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. F. Lester, “Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser,” Opt. Express 18, 21932–21937 (2010). [CrossRef]
  23. M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express 18, 12832–12838 (2010). [CrossRef]
  24. L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24 μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999). [CrossRef]
  25. M. A. Cataluna, W. Sibbet, D. A. Livshits, J. Weimert, A. R. Kovsh, and E. U. Rafailov, “Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser,” Appl. Phys. Lett. 89, 081124 (2006). [CrossRef]
  26. N. Naderi, F. Grillot, K. Yang, J. B. Wright, A. Gin, and L. F. Lester, “Two-color multi-section quantum dot distributed feedback laser,” Opt. Express 18, 27028–27035 (2010). [CrossRef]
  27. E. A. Avrutin, S. Xibin, and B. M. Russel, “Optical feedback tolerance of mode-locked laser diodes and some feedback reduction methods: a numerical investigation,” Opt. Quantum Electron. 40, 1175 (2008). [CrossRef]
  28. F. Grillot, C. Y. Lin, N. A. Naderi, M. Pochet, and L. F. Lester, “Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser” Appl. Phys. Lett. 94, 153503 (2009). [CrossRef]
  29. C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “Rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010). [CrossRef]
  30. C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, E. Roditi, I. Krestnikov, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97, 061114 (2010). [CrossRef]
  31. C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “RF linewidth of a monolithic quantum dot mode-locked laser under resonant feedback,” IET Optoelectron. 5, 105–109 (2011).
  32. B. V. Volovik, A. F. Tsatsulnikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kopev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33, 901–905 (1999). [CrossRef]
  33. X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode locking in a 1.3 μm two-section InAs quantum dot laser,” Appl. Phys. Lett. 78, 2825–2827 (2001). [CrossRef]
  34. X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two-section 1.3 μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37, 414–417 (2001). [CrossRef]
  35. J. Osmundsen and N. Gade, “Influence of optical feedback on laser frequency spectrum and threshold conditions,” IEEE J. Quantum Electron. 19, 465–469 (1983). [CrossRef]
  36. C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. 16, 46–56 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited