OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 1078–1084

Fast and effective implementation of discrete quantum Fourier transform via virtual-photon-induced process in separate cavities

Hong-Fu Wang, Shou Zhang, Ai-Dong Zhu, and Kyu-Hwang Yeon  »View Author Affiliations


JOSA B, Vol. 29, Issue 5, pp. 1078-1084 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001078


View Full Text Article

Enhanced HTML    Acrobat PDF (254 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a fast and effective scheme to implement the multiqubit discrete quantum Fourier transform (DQFT) for distant atoms trapped in separate cavities connected by optical fibers via a virtual-photon-induced process. The effective coupling between two distributed atoms is achieved without exciting and transporting photons through the optical fiber, and the gate operation is robust against the decoherence effect when the thermal photons in the environment are negligible. The implementation of the scheme is appealingly simple because the complex combination of quantum gate operations, which act on each two qubits in the rearranged DQFT circuit, is achieved only in one step through the interaction controlled by optical switches between two adjacent cavities. The scheme opens promising perspectives for scalable quantum communication networks and distributed quantum computation.

© 2012 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: December 13, 2011
Manuscript Accepted: January 28, 2012
Published: April 23, 2012

Citation
Hong-Fu Wang, Shou Zhang, Ai-Dong Zhu, and Kyu-Hwang Yeon, "Fast and effective implementation of discrete quantum Fourier transform via virtual-photon-induced process in separate cavities," J. Opt. Soc. Am. B 29, 1078-1084 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-5-1078


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. W. Shor, “Algorithms for quantum computer computation: discrete logarithms and factoring,” in Proceedings of the Symposium on the Foundations of Computer Science (IEEE, 1994), pp. 124–134.
  2. L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325–328 (1997). [CrossRef]
  3. A. Ekert and R. Jozsa, “Quantum computation and Shor’s factoring algorithm,” Rev. Mod. Phys. 68, 733–753 (1996). [CrossRef]
  4. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  5. A. Chefles, “Distributed implementation of standard oracle operators,” Phys. Rev. A 78, 062304 (2008). [CrossRef]
  6. M. O. Scully and M. S. Zubairy, “Cavity QED implementation of the discrete quantum Fourier transform,” Phys. Rev. A 65, 052324 (2002). [CrossRef]
  7. H. F. Wang, S. Zhang, and K. H. Yeon, “Implementing quantum discrete Fourier transform by using cavity quantum electrodynamics,” J. Korean Phys. Soc. 53, 1787–1790 (2008).
  8. H. F. Wang, X. Q. Shao, Y. F. Zhao, S. Zhang, and K. H. Yeon, “Protocol and quantum circuit for implementing the N-bit discrete quantum Fourier transform in cavity QED,” J. Phys. B 43, 065503 (2010). [CrossRef]
  9. H. F. Wang, A. D. Zhu, S. Zhang, and K. H. Yeon, “Simple implementation of discrete quantum Fourier transform via cavity quantum electrodynamics,” New J. Phys. 13, 013021 (2011). [CrossRef]
  10. Y. S. Weinstein, M. A. Pravia, E. M. Fortunato, S. Lloyd, and D. G. Cory, “Implementation of the quantum Fourier transform,” Phys. Rev. Lett. 86, 1889–1891 (2001). [CrossRef]
  11. J. F. Zhang, G. L. Long, Z. W. Dheng, W. Z. Liu, and Z. H. Lu, “Nuclear magnetic resonance implementation of a quantum clock synchronization algorithm,” Phys. Rev. A 70, 062322 (2004). [CrossRef]
  12. R. Barak and Y. Ben-Aryeh, “Quantum fast Fourier transform and quantum computation by linear optics,” J. Opt. Soc. Am. B 24, 231–240 (2007). [CrossRef]
  13. J. C. Howell and J. A. Yeazell, “Reducing the complexity of linear optics quantum circuits,” Phys. Rev. A 61, 052303(2000). [CrossRef]
  14. H. F. Wang, X. X. Jiang, S. Zhang, and K. H. Yeon, “Efficient quantum circuit for implementing discrete quantum Fourier transform in solid-state qubits,” J. Phys. B 44, 115502(2011). [CrossRef]
  15. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999). [CrossRef]
  16. M. F. Santos, E. Solano, and R. L. de Matos Filho, “Conditional large Fock state preparation and field state reconstruction in cavity QED,” Phys. Rev. Lett. 87, 093601 (2001). [CrossRef]
  17. M. Feng, “Quantum computing with trapped ions in an optical cavity via Raman transition,” Phys. Rev. A 66, 054303 (2002). [CrossRef]
  18. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006). [CrossRef]
  19. S. B. Zheng, “Virtual-photon-induced quantum phase gates for two distant atoms trapped in separate cavities,” Appl. Phys. Lett. 94, 154101 (2009). [CrossRef]
  20. S. B. Zheng, “Quantum communication and entanglement between two distant atoms via vacuum fields,” Chin. Phys. B 19, 064204 (2010). [CrossRef]
  21. A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity,” Phys. Rev. Lett. 97, 083602 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited