OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 1094–1103

Enhanced coupled-resonator-induced transparency and optical Fano resonance via intracavity backscattering

Thomas Y. L. Ang and Nam Quoc Ngo  »View Author Affiliations

JOSA B, Vol. 29, Issue 5, pp. 1094-1103 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (571 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We look into the use of the intracavity backscattering in twin-coupled traveling wave microresonators (TWMRs) to generate enhanced coupled-resonator-induced transparency (CRIT) and optical Fano resonance (OFR). Intracavity backscattering makes it possible to either generate a single CRIT peak or a pair of CRIT peaks within one free spectral range in the transmission spectrum. The distance between the twin-CRIT peaks can be tuned by controlling the intracavity backscattering strength. Also, the use of intracavity backscattering allows the simultaneous production of both fast and slow light effects. In addition, it is found that the symmetric CRIT peaks can be reshaped into asymmetric OFR line shapes either by using TWMRs with different intracavity backscattering strengths when one input is launched into the circuit or by modulating the phase/amplitude difference between the dual contrapropagating inputs, which are launched into the circuit in the presence of intracavity backscattering. These allow switching between CRIT and OFR to be realized in the absence of gain or phase tuning elements in the cavities, unlike conventional twin-coupled TWMR systems.

© 2012 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(230.7020) Optical devices : Traveling-wave devices
(230.4555) Optical devices : Coupled resonators

ToC Category:
Integrated Optics

Original Manuscript: September 27, 2011
Revised Manuscript: February 3, 2012
Manuscript Accepted: February 3, 2012
Published: April 25, 2012

Thomas Y. L. Ang and Nam Quoc Ngo, "Enhanced coupled-resonator-induced transparency and optical Fano resonance via intracavity backscattering," J. Opt. Soc. Am. B 29, 1094-1103 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, Optical Microcavities, Vol. 5 of Advanced Series in Applied Physics (World Scientific, 2004).
  2. Y. F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94, 231115 (2009). [CrossRef]
  3. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006). [CrossRef]
  4. Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75, 063833 (2007). [CrossRef]
  5. L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, “Tunable delay line with interacting whispering-gallery-mode resonators,” Opt. Lett. 29, 626–628 (2004). [CrossRef]
  6. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004). [CrossRef]
  7. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced-transparency,” Phys. Rev. Lett. 98, 213904 (2007). [CrossRef]
  8. H. Chang and D. D. Smith, “Gain-assisted superluminal propagation in coupled optical resonators,” J. Opt. Soc. Am. B 22, 2237–2241 (2005). [CrossRef]
  9. C. Peng, Z. Li, and A. Xu, “Optical gyroscope based on a coupled resonator with the all-optical analogous property of electromagnetically induced transparency,” Opt. Express 15, 3864–3875 (2007). [CrossRef]
  10. C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003). [CrossRef]
  11. L. Zhou and A. W. Poon, “Fano resonance-based electrically reconfigurable add–drop filters in silicon microring resonator-coupled Mach–Zehnder interferometers,” Opt. Lett. 32, 781–783 (2007). [CrossRef]
  12. Y. Lu, L. Xu, Y. Yu, P. Wang, and J. Yao, “Double-wavelength Fano resonance and enhanced coupled-resonator-induced transparency in a double-microcavity resonator system,” J. Opt. Soc. Am. A 23, 1718–1721 (2006). [CrossRef]
  13. M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano interference effect in coupled-microsphere resonator-induced transparency,” J. Opt. Soc. Am. B 26, 813–818 (2009). [CrossRef]
  14. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]
  15. M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273–276 (2001). [CrossRef]
  16. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961). [CrossRef]
  17. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010). [CrossRef]
  18. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “All-optical switch involving Fano resonance in ultrasmall photonic crystal nanocavities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CMV5.
  19. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009). [CrossRef]
  20. X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009). [CrossRef]
  21. M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005). [CrossRef]
  22. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005). [CrossRef]
  23. S. A. Backes and J. R. A. Cleaver, “Microdisk laser structures for mode control and directional emission,” J. Vac. Sci. Technol. B 16, 3817–3820 (1998). [CrossRef]
  24. B. E. Little, S. T. Chu, and H. A. Haus, “Second-order filtering and sensing with partially coupled traveling waves in a single resonator,” Opt. Lett. 23, 1570–1572 (1998). [CrossRef]
  25. J. G. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photon. 4, 46–49 (2009). [CrossRef]
  26. Q. Li, Z. Zhang, J. Wang, M. Qiu, and Y. Su, “Fast light in silicon ring resonator with resonance-splitting,” Opt. Express 17, 933–940 (2009). [CrossRef]
  27. T. Y. L. Ang and N. Q. Ngo, “Tunable fast and slow light in a traveling wave microresonator via interaction of enhanced intra-cavity backscattering with dual contrapropagating inputs,” J. Opt. Soc. Am. B 27, 2774–2783 (2010). [CrossRef]
  28. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filtering,” IEEE J. Quantum Electron. 35, 1322–1331 (1999). [CrossRef]
  29. R. W. Boyd, “Slow light now and then,” Nat. Photon. 2, 454–455 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited