OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 1112–1118

Laser ablation of CsI: time-resolved Fourier-transform infrared spectra of atomic cesium in the 8008000cm1 range

Svatopluk Civiš, Martin Ferus, Petr Kubelík, Petr Jelínek, Vladislav E. Chernov, and Mikhail Yu. Knyazev  »View Author Affiliations


JOSA B, Vol. 29, Issue 5, pp. 1112-1118 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001112


View Full Text Article

Enhanced HTML    Acrobat PDF (495 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fourier-transform time-resolved spectroscopy of laser-induced breakdown of Cs vapor in a vacuum has been used for the measurement of atomic Cs emission spectra in the 8008000cm1 range with a resolution of 0.02cm1. The 6h and 7h levels of Cs are observed. The dipole transition matrix elements (transition probabilities, oscillator, and line strengths) between the observed levels are calculated using quantum defect theory.

© 2012 Optical Society of America

OCIS Codes
(020.4900) Atomic and molecular physics : Oscillator strengths
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Spectroscopy

History
Original Manuscript: December 8, 2011
Revised Manuscript: January 31, 2012
Manuscript Accepted: February 8, 2012
Published: April 30, 2012

Citation
Svatopluk Civiš, Martin Ferus, Petr Kubelík, Petr Jelínek, Vladislav E. Chernov, and Mikhail Yu. Knyazev, "Laser ablation of CsI: time-resolved Fourier-transform infrared spectra of atomic cesium in the 800–8000  cm−1 range," J. Opt. Soc. Am. B 29, 1112-1118 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-5-1112


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. E. Sansonetti, “Wavelengths, transition probabilities, and energy levels for the spectra of cesium (Cs I–Cs LV),” J. Phys. Chem. Ref. Data 38, 761–923 (2009). [CrossRef]
  2. W. Clark and C. H. Greene, “Adventures of a Rydberg electron in an anisotropic world,” Rev. Mod. Phys. 71, 821–833 (1999). [CrossRef]
  3. S. A. Napier, D. Cvejanović, J. F. Williams, and L. Pravica, “Effect of electron correlations on the excitation of neutral states of zinc in the autoionizing region: a photon emission study,” Phys. Rev. A 78, 032706 (2008). [CrossRef]
  4. S. I. Themelis, “Partial widths with interchannel coupling for the P-3(0) Wannier-ridge states of H-,” Phys. Rev. A 81, 064504 (2010). [CrossRef]
  5. S. R. Lundeen, “Fine structure in high-L Rydberg states: a path to properties of positive ions,” in Advances In Atomic, Molecular, and Optical Physics, Vol. 52, P. R. Berman and C. C. Lin, eds. (Academic Press, 2005), pp. 161–208.
  6. M. E. Hanni, J. A. Keele, S. R. Lundeen, and W. G. Sturrus, “Microwave spectroscopy of high-Ln=10 Rydberg states of argon,” Phys. Rev. A 78, 062510 (2008). [CrossRef]
  7. J. A. Keele, S. L. Woods, M. E. Hanni, S. R. Lundeen, and W. G. Sturrus, “Optical spectroscopy of high-l Rydberg states of nickel,” Phys. Rev. A 81, 022506 (2010). [CrossRef]
  8. W.-B. Lee, J.-Y. Wu, Y.-I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39, 27–97 (2004). [CrossRef]
  9. D. Babánková, S. Civiš, and L. Juha, “Chemical consequences of laser-induced breakdown in molecular gases,” Prog. Quantum Electron. 30, 75–88 (2006). [CrossRef]
  10. A. Gomes, A. Aubreton, J. J. Gonzalez, and S. Vacquie, “Experimental and theoretical study of the expansion of a metallic vapour plasma produced by laser,” J. Phys. D 37, 689 (2004). [CrossRef]
  11. O. Barthelemy, J. Margot, M. Chaker, M. Sabsabi, F. Vidal, T. W. Johnston, S. Laville, and B. L. Drogoff, “Influence of the laser parameters on the space and time characteristics of an aluminum laser-induced plasma,” Spectrochim. Acta, Part B 60, 905–914 (2005). [CrossRef]
  12. C. Aragon and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta, Part B 63, 893–916 (2008). [CrossRef]
  13. S. Civiš, P. Kubelík, P. Jelínek, V. E. Chernov, and M. Y. Knyazev, “Atomic cesium 6h states observed by time-resolved FTIR spectroscopy,” J. Phys. B 44, 225006 (2011). [CrossRef]
  14. Y. Ralchenko, A. Kramida, and J. Reader, and NIST ASD Team, “NIST Atomic Spectra Database (version 4.1.0)” (2011).
  15. S. Civiš, I. Matulková, J. Cihelka, K. Kawaguchi, V. E. Chernov, and E. Y. Buslov, “Time-resolved Fourier-transform infrared emission spectroscopy of Au in the 1800–4000 ‒cm−1 region: Rydberg transitions,” Phys. Rev. A 81, 012510 (2010). [CrossRef]
  16. S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi,, and V. E. Chernov, “Time-resolved Fourier-transform infrared emission spectroscopy of Ag in the (1300−3600)-cm−1 region: transitions involving f and g states and oscillator strengths,” Phys. Rev. A 82, 022502 (2010). [CrossRef]
  17. S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V. E. Chernov, “Time-resolved FTIR emission spectroscopy of Cu in the 1800−3800  cm−1 region: transitions involving f and g states and oscillator strengths,” J. Phys. B 44, 025002 (2011). [CrossRef]
  18. K. Kawaguchi, Y. Hama, and S. Nishida, “Time-resolved Fourier transform infrared spectroscopy: application to pulsed discharges,” J. Mol. Spectrosc. 232, 1–13 (2005). [CrossRef]
  19. “Opus spectroscopy software,” http://www.brukeroptics.com/opus.html (2010).
  20. A. D. Giacomo, V. Shakhatov, and O. D. Pascale, “Optical emission spectroscopy and modeling of plasma produced by laser ablation of titanium oxides,” Spectrochim. Acta, Part B 56, 753–776 (2001). [CrossRef]
  21. H. Qi, Y. Sun, X. Liu, X. Hou, and Y. Li, “Spatial spectroscopic diagnose of the plasma produced from laser ablation of a KTA crystal,” Laser Phys. Lett. 4, 212–217 (2007). [CrossRef]
  22. C. H. Greene, A. R. P. Rau, and U. Fano, “General form of the quantum-defect theory. II,” Phys. Rev. A 26, 2441–2459 (1982). [CrossRef]
  23. V. Chernov, N. Manakov, and A. Starace, “Exact analytic relation between quantum defects and scattering phases with applications to Green’s functions in quantum defect theory,” Eur. Phys. J. D 8, 347–359 (2000). [CrossRef]
  24. V. E. Chernov, D. L. Dorofeev, I. Y. Kretinin, and B. A. Zon, “Method of the reduced-added Green function in the calculation of atomic polarizabilities,” Phys. Rev. A 71, 022505 (2005). [CrossRef]
  25. B. N. Chichkov and V. P. Shevelko, “Dipole transitions in atoms and ions with one valence electron,” Phys. Scr. 23, 1055–1065 (1981). [CrossRef]
  26. A. Sieradzan, M. D. Havey, and M. S. Safronova, “Combined experimental and theoretical study of the 6p2Pj→8s2S1/2 relative transition matrix elements in atomic Cs,” Phys. Rev. A 69, 022502 (2004). [CrossRef]
  27. A. Khalil and N. Sreenivasan, “Study of experimental and numerical simulation of laser ablation in stainless steel,” Laser Phys. Lett. 2, 445–451 (2005). [CrossRef]
  28. K. Kawaguchi, N. Sanechika, Y. Nishimura, R. Fujimori, T. N. Oka, Y. Hirahara, A. Jaman, and S. Civiš, “Time-resolved Fourier transform infrared emission spectroscopy of laser ablation products,” Chem. Phys. Lett. 463, 38–41 (2008). [CrossRef]
  29. M. Rossa, C. A. Rinaldi, and J. C. Ferrero, “Internal state populations and velocity distributions of monatomic species ejected after the 1064 nm laser irradiation of barium,” J. Appl. Phys. 105, 063306 (2009). [CrossRef]
  30. S. Civiš, I. Matulková, J. Cihelka, P. Kubelík, K. Kawaguchi, and V. E. Chernov, “Low-excited f-, g- and h-states in Au, Ag and Cu observed by Fourier-transform infrared spectroscopy in the 1000–7500  cm−1 region,” J. Phys. B 44, 105002 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited