OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 881–890

Gain spectrum of a laser-driven tripod-type atom dynamically induced in the presence of spontaneously generated coherence

Si-Cong Tian, Ren-Gang Wan, Zhi-Hui Kang, Hang Zhang, Yun Jiang, Hai-Ning Cui, and Jin-Yue Gao  »View Author Affiliations


JOSA B, Vol. 29, Issue 5, pp. 881-890 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000881


View Full Text Article

Enhanced HTML    Acrobat PDF (1076 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We examine the absorption of a weak probe beam in a laser-driven tripod-type atom with three closely lying ground levels, where both the driving and probe lasers interact simultaneously with the three transitions. The effects of spontaneously generated coherence (SGC) are taken into account. We introduce dipole moments in the dressed-state picture and the Hamiltonian in terms of the dressed states describing the interaction between the probe and the atom. Gain spectrum under various conditions are presented and analyzed. We show that the spectral structure and the gain amplitude of the probe are strongly influenced by the effect of SGC and the frequency separation of the three closely lying ground levels. The tripod-type atomic system with quantum interference in spontaneous emission can be simulated in the dressed-state picture of a coherently driven four-level N-type system where no SGC effect exists.

© 2012 Optical Society of America

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(270.6620) Quantum optics : Strong-field processes

ToC Category:
Quantum Optics

History
Original Manuscript: September 15, 2011
Revised Manuscript: December 9, 2011
Manuscript Accepted: December 11, 2011
Published: April 4, 2012

Citation
Si-Cong Tian, Ren-Gang Wan, Zhi-Hui Kang, Hang Zhang, Yun Jiang, Hai-Ning Cui, and Jin-Yue Gao, "Gain spectrum of a laser-driven tripod-type atom dynamically induced in the presence of spontaneously generated coherence," J. Opt. Soc. Am. B 29, 881-890 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-5-881


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. J. Yang, M. Xie, Z. Zhang, and K. Wang, “Effect of vacuum-induced coherences on coherent population trapping of moving atoms,” Phys. Rev. A 77, 063825 (2008). [CrossRef]
  2. X. H. Yang and S. Y. Zhu, “Control of coherent population transfer via spontaneous decay-induced coherence,” Phys. Rev. A 77, 063822 (2008). [CrossRef]
  3. E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency induced via decay interference,” Phys. Rev. Lett. 82, 2079–2082 (1999). [CrossRef]
  4. E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Transparency of a short laser pulse via decay interference in a closed V-type system,” Phys. Rev. A 61, 045802 (2000). [CrossRef]
  5. M. A. Antón, Oscar G. Calderón, and F. Carreño, “Spontaneously generated coherence effects in a laser-driven four-level atomic system,” Phys. Rev. A 72, 023809 (2005). [CrossRef]
  6. A. Fountoulakis, A. F. Terzis, and E. Paspalakis, “Coherent phenomena due to double-dark states in a system with decay interference,” Phys. Rev. A 73, 033811 (2006). [CrossRef]
  7. C. H. Raymond Ooi, “Effects of spontaneously generated coherence on two-photon correlation in a double-cascade scheme,” Phys. Rev. A 75, 043818 (2007). [CrossRef]
  8. J. W. Gao, Q. Q. Bao, R. G. Wan, C. L. Cui, and J. H. Wu, “Triple photonic band-gap structure dynamically induced in the presence of spontaneously generated coherence,” Phys. Rev. A 83, 053815 (2011). [CrossRef]
  9. Y. P. Yang, J. P. Xu, H. Chen, and S. Y. Zhu, “Quantum interference enhancement with left-handed materials,” Phys. Rev. Lett. 100, 043601 (2008). [CrossRef]
  10. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Plasmon-induced enhancement of quantum interference near metallic nanostructures,” Phys. Rev. Lett. 103, 063602 (2009). [CrossRef]
  11. G. S. Agarwal, “Anisotropic vacuum-induced interference in decay channels,” Phys. Rev. Lett. 84, 5500–5503 (2000). [CrossRef]
  12. Z. Ficek and S. Swain, “Simulating quantum interference in a three-level system with perpendicular transition dipole moments,” Phys. Rev. A 69, 023401 (2004). [CrossRef]
  13. J. H. Wu, A. J. Li, Yue Ding, Y. C. Zhao, and J. Y. Gao, “Control of spontaneous emission from a coherently driven four-level atom,” Phys. Rev. A 72, 023802 (2005). [CrossRef]
  14. A. J. Li, J. Y. Gao, J. H. Wu, and Lei Wang, “Simulating spontaneously generated coherence in a four-level atomic system,” J. Phys. B 38, 3815–3823 (2005). [CrossRef]
  15. J. H. Li, J. B. Liu, A. X. Chen, and C. C. Qi, “Spontaneous emission spectra and simulating multiple spontaneous generation coherence in a five-level atomic medium,” Phys. Rev. A 74, 033816 (2006). [CrossRef]
  16. A. J. Li, X. L. Song, X. G. Wei, L. Wang, and J. Y. Gao, “Effects of spontaneously generated coherence in a microwave-driven four-level atomic system,” Phys. Rev. A 77, 053806 (2008). [CrossRef]
  17. Z. H. Li, D. W. Wang, H. Zheng, S. Y. Zhu, and M. S. Zubairy, “Quantum interference due to energy shifts and its effect on spontaneous emission,” Phys. Rev. A 82, 050501(R)(2010). [CrossRef]
  18. C. L. Wang, A. J. Li, X. Y. Zhou, Z. H. Kang, Y. Jiang, and J. Y. Gao, “Investigation of spontaneously generated coherence in dressed states of 85Rb atoms,” Opt. Lett. 33, 687–689 (2008). [CrossRef]
  19. C. L. Wang, Z. H. Kang, S. C. Tian, Y. Jiang, and J. Y. Gao, “Effect of spontaneously generated coherence on absorption in a V-type system: investigation in dressed states,” Phys. Rev. A 79, 043810 (2009). [CrossRef]
  20. S. C. Tian, Z. H. Kang, C. L. Wang, R. G. Wan, J. Kou, H. Zhang, Y. Jiang, H. N. Cui, and J. Y. Gao, “Observation of spontaneously generated coherence on absorption in rubidium atomic beam,” Opt. Commun. 285, 294–299 (2012). [CrossRef]
  21. P. Zhou and S. Swain, “Quantum interference in probe absorption: narrow resonances, transparency, and gain without population inversion,” Phys. Rev. Lett. 78, 832–835 (1997). [CrossRef]
  22. S. Menon and G. S. Agarwal, “Gain components in the Autler-Townes doublet from quantum interferences in decay channels,” Phys. Rev. A 61, 013807 (1999). [CrossRef]
  23. P. Dong and S. H. Tang, “Absorption spectrum of a V-type three-level atom driven by a coherent field,” Phys. Rev. A 65, 033816 (2002). [CrossRef]
  24. S. Menon and G. S. Agarwal, “Effects of spontaneously generated coherence on the pump-probe response of a Λ system,” Phys. Rev. A 57, 4014–4018 (1998). [CrossRef]
  25. W. H. Xu, J. H. Wu, and J. Y. Gao, “Effects of spontaneously generated coherence on transient process in a Λ system,” Phys. Rev. A 66, 063812 (2002). [CrossRef]
  26. J. H. Wu and J. Y. Gao, “Phase control of light amplification without inversion in a Λ system with spontaneously generated coherence,” Phys. Rev. A 65, 063807 (2002). [CrossRef]
  27. W. H. Xu and J. Y. Gao, “Gain spectrum of a laser-driven-type atom with vacuum-induced coherence,” J. Opt. Soc. Am. B 22, 2385–2392 (2005). [CrossRef]
  28. B. R. Mollow, “Stimulated emission and absorption near resonance for driven systems,” Phys. Rev. A 5, 2217–2222 (1972). [CrossRef]
  29. L. M. Narducci, M. O. Scully, G. L. Oppo, P. Ru, and J. R. Tredicce, “Spontaneous emission and absorption properties of a driven three-level system,” Phys. Rev. A 42, 1630–1649 (1990). [CrossRef]
  30. M. Yan, E. G. Rickey, and Y. F. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64, 013412 (2001). [CrossRef]
  31. H. Kang, G. Hernandez, and Y. F. Zhu, “Superluminal and slow light propagation in cold atoms,” Phys. Rev. A 70, 011801(R) (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited