OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 891–895

Mode field distribution of optical transmission along microfiber affected by CNT films with complex refraction index

Baicheng Yao, Yu Wu, Lan Jia, Yunjiang Rao, Yuan Gong, and Chenying Jiang  »View Author Affiliations

JOSA B, Vol. 29, Issue 5, pp. 891-895 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (764 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Subwavelength diameter microfiber with carbon nanotube (CNT) cladding attracts wide attention for its significant effect on evanescent coupling and interaction. In this paper, the physical mechanism and spatial expression of the light field near CNT coated microfiber are analyzed by the electromagnetic calculation and mode field analysis experiments. The simulated and experimental results demonstrate that light field distribution along the CNT coated microfiber shows the resonant modes with intensity attenuation locating at 0 μm , 1.7 μm, 3.3 μm at the direction of core radius. The investigation about interaction between evanescent wave and CNT films will inspire the future application of CNT films and microfiber based lasers, all-optical switches, wavelength converters, sensors, and other integrated functional photonic devices.

© 2012 Optical Society of America

OCIS Codes
(310.2790) Thin films : Guided waves
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Thin Films

Original Manuscript: October 13, 2011
Revised Manuscript: December 12, 2011
Manuscript Accepted: December 22, 2011
Published: April 4, 2012

Baicheng Yao, Yu Wu, Lan Jia, Yunjiang Rao, Yuan Gong, and Chenying Jiang, "Mode field distribution of optical transmission along microfiber affected by CNT films with complex refraction index," J. Opt. Soc. Am. B 29, 891-895 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Yamashita, A. Martinez, and K. K. Chow, “Carbon nanotube photonics,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2010), paper CTuII3.
  2. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19, 6155–6163 (2011). [CrossRef]
  3. K. Kashiwagi, S. Yamashita, and S. Y. Set, “In-situ monitoring of optical deposition of carbon nanotubes onto fiber end,” Opt. Express 17, 5711–5715 (2009). [CrossRef]
  4. G. B. Lee, “Manipulation of CNT by using optically-induced dielectrophoresis,” in Proceedings of IEEE Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (IEEE, 2010), pp. 880–882.
  5. S. Y. Lu and L. C. Chien, “Carbon nanotube doped liquid crystal OCB cells: physical and electro-optical properties,” Opt. Express 16, 12777–12785 (2008).
  6. K. Kashiwagi and S. Yamashita, “Deposition of carbon nanotubes around microfiber via evanascent light,” Opt. Express 17, 18364–18370 (2009). [CrossRef]
  7. K. Lai, N. Xi, Y. L. Luo, C. K. M. Fung, J. B. Zhang, and H. Z. Chen, “Development of carbon nanotube based spectrum infrared sensors,” in Proceedings of IEEE Conference on SENSORS (IEEE, 2008) pp. 1600–1603.
  8. J. Suehiro, “Controlled fabrication of carbon nanotube NO2 gas sensor using dielectrophoretic impedance measurement,” Sens. Actuators B 108, 398–403 (2005). [CrossRef]
  9. P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, “Carbon nanocarno optical and electrical research in Helmet magnet equalities,” Science 287, 1801–1804 (1999). [CrossRef]
  10. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004). [CrossRef]
  11. B. S. Guru and H. R. Hiziroglu, Electromagnetic Field Theory Fundamental (PWS/Thomson Learning, 2002).
  12. A. W. Synder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1983).
  13. J. Bures and R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16, 1992–1996 (1999). [CrossRef]
  14. J. M. Auñón and M. N. Vesperinas, “Near-field spatial correlations from partially coherent homogeneous planar sources: effects on surface wave excitation,” Opt. Lett. 36, 3410–3412 (2011). [CrossRef]
  15. G. P. Agrawal. Nonlinear Fiber Optics, 4th ed. (Elsevier, 2009).
  16. G. T. Liu, Y. C. Zhao, K. Deng, L. Zheng, W. G. Chu, J. R. Chen, Y. L. Yang, K. H. Zheng, H. B. Huang, W. J. Ma, L. Song, H. F. Yang, C. Z. Gu, G. H. Rao, C. Wang, S. S. Xie, and L. F. Sun, “Highly dense and perfectly aligned single-walled carbon nanotubes fabricated by diamond wire drawing,” Nano Lett. 8, 1071–1075 (2008). [CrossRef]
  17. C. J. Zhao, Z. X. Tang, Y. X. Ye, D. Y. Fan, L. J. Qian, S. C. Wen, and G. H. Chen, “Field and dispersion properties of subwavelength-diameter hollow optical fiber,” Opt. Express 15, 6629–6634 (2007). [CrossRef]
  18. D. Marcuse, Theories of Dielectric Optical Waveguides(Academic, 1991).
  19. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and Eric Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003). [CrossRef]
  20. M. H. Liu, K. Ushida, A. Kira, and H. Nakahara, “Novel photo recording Langmuir-Blodgett films,” Adv. Mater. 9, 1099–1101 (1997). [CrossRef]
  21. H. F. Shi, J. G. Ok, H. W. Baac, and L. J. Guo, “Low density carbon nanotube forest as an index-matched and near perfect absorption coating,” Appl. Phys. Lett. 99, 211103–211106(2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited