OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 901–905

Tunable optimal quantum cloning machines with trapped atoms

Wei Xiong and Liu Ye  »View Author Affiliations


JOSA B, Vol. 29, Issue 5, pp. 901-905 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000901


View Full Text Article

Enhanced HTML    Acrobat PDF (160 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a scheme to realize tunable optimal quantum cloning machines with trapped atoms. Through selecting a pairing of Raman transitions and choosing suitable parameters of the external fields, we can not only realize an optimal symmetric (asymmetric) universal quantum cloning machine and phase-covariant cloning machine, but also an optimal symmetric economical phase-covariant cloning machine. Additionally, the atomic excited states and photonic states can be adiabatically eliminated. In our scheme, the quantum cloning machine can copy the information from one trapped atom to arbitrary two distant trapped atoms, which is significant to quantum communication and quantum computation.

© 2012 Optical Society of America

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(270.5580) Quantum optics : Quantum electrodynamics
(020.1335) Atomic and molecular physics : Atom optics
(060.5565) Fiber optics and optical communications : Quantum communications
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

History
Original Manuscript: September 19, 2011
Revised Manuscript: December 19, 2011
Manuscript Accepted: December 23, 2011
Published: April 6, 2012

Citation
Wei Xiong and Liu Ye, "Tunable optimal quantum cloning machines with trapped atoms," J. Opt. Soc. Am. B 29, 901-905 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-5-901


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982). [CrossRef]
  2. V. Bužek and M. Hillery, “Quantum copying: beyond the nocloning theorem,” Phys. Rev. A 54, 1844–1852 (1996). [CrossRef]
  3. R. F. Werner, “Optimal cloning of pure states,” Phys. Rev. A 58, 1827–1832 (1998). [CrossRef]
  4. D. Bruß, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000). [CrossRef]
  5. H. Fan, H. Imai, K. Matsumoto, and X. B. Wang, “Phase-covariant quantum cloning of qudits,” Phys. Rev. A 67, 022317 (2003). [CrossRef]
  6. T. Durt and J. Du, “Characterization of low-cost one-to-two qubit cloning,” Phys. Rev. A 69, 062316 (2004). [CrossRef]
  7. C. S. Niu and R. B. Griffiths, “Two-qubit copying machine for economical quantum eavesdropping,” Phys. Rev. A 60, 2764–2776 (1999). [CrossRef]
  8. H. K Cummins, C. Jones, A. Furze, N. F. Soffe, M. Mosca, J. M. Peach, and J. A. Jones, Phys. Rev. Lett. 88, 187901 (2002). [CrossRef]
  9. A. Lamas-Linares, C. Simon, J. C. Howell, and D. Bouwmeester, “Experimental quantum cloning of single photons,” Science 296, 712–714 (2002). [CrossRef]
  10. M. Alexanian, “Cavity coherent-state cloning via Raman scattering,” Phys. Rev. A 67, 033809 (2003). [CrossRef]
  11. X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006). [CrossRef]
  12. P. Milman, H. Ollivier, and J. M. Raimond, “Universal quantum cloning in cavity QED,” Phys. Rev. A 67, 012314 (2003). [CrossRef]
  13. W. H. Zhang and L. Ye, “Scheme to implement general economical phase-covariant telecloning,” Phys. Lett. A 353, 130–137 (2006). [CrossRef]
  14. W. H. Zhang and L. Ye, “Cavity-QED scheme to implement the optimal symmetric approximate quantum telecloning,” Phys. Lett. A 354, 344–352 (2006). [CrossRef]
  15. S. B. Zheng and G. C. Guo, “Entangling and cloning machine with increasing robustness against decoherence as the number of qubits increases,” Phys. Rev. A 72, 064303–064307 (2005). [CrossRef]
  16. W. Xiong and L. Ye, “Optimal real state quantum cloning machine in cavity quantum electrodynamics,” J. Opt. Soc. Am. B 28, 2260–2264 (2011). [CrossRef]
  17. S. B. Zheng, C. P. Yang, and F. Nori, “Arbitrary control of coherent dynamics for distant qubits in a quantum network,” Phys. Rev. A 82, 042327 (2010). [CrossRef]
  18. J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40, 6741–6744 (1989). [CrossRef]
  19. N. V. Vitanov, K. A. Suominen, and B. W. Shore, J. Phys. B 32, 4535–4546 (1999). [CrossRef]
  20. N. J. Cerf, “Pauli Cloning of a quantum bit,” Phys. Rev. Lett. 84, 4497–4500 (2000). [CrossRef]
  21. V. Karimipour and A. T. Rezakhani, “Generation of phase-covariant quantum cloning,” Phys. Rev. A 66, 052111 (2002). [CrossRef]
  22. D. Bruss, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000). [CrossRef]
  23. H. Fan, K. Matsumoto, X. B. Wang, and M. Wadati, “Quantum cloning machines for equatorial qubits,” Phys. Rev. A 65, 012304 (2001). [CrossRef]
  24. D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998). [CrossRef]
  25. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005). [CrossRef]
  26. K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004). [CrossRef]
  27. S. B. Zheng, “Virtual-photon-induced quantum phase gates for two distant atoms trapped in separate cavities,” Appl. Phys. Lett. 94, 154101 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited