OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 924–933

Tunable flat-band slow light via contra-propagating cavity modes in twin coupled microresonators

Thomas Y. L. Ang and Nam Quoc Ngo  »View Author Affiliations


JOSA B, Vol. 29, Issue 5, pp. 924-933 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000924


View Full Text Article

Enhanced HTML    Acrobat PDF (833 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We utilize the contra-propagating cavity modes that arise from the evanescent coupling of both the resonators to the bus waveguide in a twin coupled traveling-wave microresonators (MRs) system to generate flat-band slow light (SL). The contra-propagating cavity modes will generate multipeaks in the resonance spectra. Flat-band SL can be generated if such multipeaks become undistinguishable and merge into one single broadened peak that is maximally flat when the inter-resonator coupling strength is optimized relative to the resonators-to-bus-waveguide coupling strengths. The bandwidth and the group delay can be tuned by adjusting the coupling strengths. It is shown that the delay-bandwidth products of the output light at the through (reflection) port are 3- to 12-fold (6- to 24-fold) higher than that of conventional MR-based SL systems. Fabrication tolerance and cavity losses analyses have also revealed that the proposed scheme is rather robust to the fabrication errors and limitations of current state-of-the-art semiconductor processing technology.

© 2012 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(230.7020) Optical devices : Traveling-wave devices
(230.4555) Optical devices : Coupled resonators

ToC Category:
Integrated Optics

History
Original Manuscript: September 27, 2011
Revised Manuscript: January 6, 2012
Manuscript Accepted: January 6, 2012
Published: April 6, 2012

Citation
Thomas Y. L. Ang and Nam Quoc Ngo, "Tunable flat-band slow light via contra-propagating cavity modes in twin coupled microresonators," J. Opt. Soc. Am. B 29, 924-933 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-5-924


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Gauthier, “Slow light brings faster communication,” Phys. World 18, 30–32 (2005).
  2. P. W. Milonni, Fast Light, Slow Light and Left-Handed Light (Taylor & Francis, 2004).
  3. K. Totsuka and M. Tomita, “Dynamics of fast and slow light propagation through a microsphere-optical-fiber-system,” Phys. Rev. E 75, 6610–6614 (2007). [CrossRef]
  4. H. P. Uranus, L. Zhuang, C. G. H. Roeloffzen, and M. H. J. W. Hoekstra, “Pulse advancement and delay in an integrated-optical two-port ring-resonator circuit: direct experimental observations,” Opt. Lett. 32, 2620–2622 (2007). [CrossRef]
  5. O. Schwelb, “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview,” J. Lightwave Technol. 22, 1380–1394 (2004). [CrossRef]
  6. T. Y. L. Ang and N. Q. Ngo, “Harnessing coupler-induced localized backscattering for enhanced fast and slow light performances in a traveling wave microresonator,” J. Opt. Soc. Am. B 27, 2639–2647 (2010). [CrossRef]
  7. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  8. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004). [CrossRef]
  9. L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, “Tunable delay line with interacting whispering-gallery-mode resonators,” Opt. Lett. 29, 626–628 (2004). [CrossRef]
  10. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007). [CrossRef]
  11. M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano interference effect in coupled-microsphere resonator-induced transparency,” J. Opt. Soc. Am. B 26, 813–818 (2009). [CrossRef]
  12. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001). [CrossRef]
  13. C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. van Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” in Proc. IEEE/LEOS Benelux Chapter, 10th Symp (2005), 71–74.
  14. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature 1, 65 (2007).
  15. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21, 1665–1673 (2004). [CrossRef]
  16. F. Xia, L. Sekaric, M. O’Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89, 041122 (2006).
  17. Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75, 063833 (2007).
  18. M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, and L. Pavesi, “Coupled-resonator-induced-transparency concept for wavelength routing applications,” Opt. Express 19, 12227–12240 (2011). [CrossRef]
  19. Y. Chung, D. G. Kim, and N. Dagli, “Reflection properties of coupled-ring reflectors,” J. Lightwave Technol. 24, 1865–1874 (2006). [CrossRef]
  20. I. Chremmos and N. Uzunoglu, “Reflective properties of double-ring resonator system coupled to a waveguide,” IEEE Photon. Technol. Lett. 17, 2110–2112 (2005). [CrossRef]
  21. L. Y. Mario and M. K. Chin, “Optical buffer with higher delay-bandwidth product in a two-ring system,” Opt. Express 16, 1796–1807 (2008). [CrossRef]
  22. J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007). [CrossRef]
  23. A. H. Atabaki, B. Momeni, A. A. Eftekhar, E. S. Hosseini, S. Yegnanarayanan, and A. Adibi, “Tuning of resonance-spacing in a traveling-wave resonator device,” Opt. Express 18, 9447–9455 (2010). [CrossRef]
  24. W. Bogaerts, L. Liu, S. Selvaraja, J. Brouckaert, D. Taillaert, D. Vermeulen, G. Roelkens, D. Van Thourhout, and R. Baets, “Silicon nanophotonic waveguides and their applications,” Proc. SPIE 7134, 71341O (2008).
  25. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005). [CrossRef]
  26. A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photon. Technol. Lett. 21, 651–653 (2009). [CrossRef]
  27. A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Extreme miniaturization of silicon add-drop microring filters for VLSI photonics applications,” IEEE Photon. Technol. Lett. 2, 436–444 (2010).
  28. J. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer-Verlag, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited