OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 959–964

Metal-clad waveguide sensor using a left-handed material as a core layer

Hani M. Kullab, Sofyan A. Taya, and Taher M. El-Agez  »View Author Affiliations

JOSA B, Vol. 29, Issue 5, pp. 959-964 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (969 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A four-layer waveguide structure comprising a dielectric substrate, a metal layer, a left-handed material (LHM) as a guiding layer, and a cladding is investigated as a metal-clad waveguide sensor. Fresnel reflection coefficients are used to study the resonance dips at which the reflectance minimizes. Our calculations show that the proposed structure has a preference over the surface-plasmon resonance structure since it gives a much sharper reflectance dip and can achieve considerable sensitivity improvement. The effects of the LHM permittivity, permeability, and thickness on the reflectance curves is studied.

© 2012 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(230.7400) Optical devices : Waveguides, slab
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(350.3618) Other areas of optics : Left-handed materials

ToC Category:
Optical Devices

Original Manuscript: November 14, 2011
Revised Manuscript: January 10, 2012
Manuscript Accepted: January 12, 2012
Published: April 11, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Hani M. Kullab, Sofyan A. Taya, and Taher M. El-Agez, "Metal-clad waveguide sensor using a left-handed material as a core layer," J. Opt. Soc. Am. B 29, 959-964 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Skivesen, R. Horvath, and H. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B 106, 668–676 (2005). [CrossRef]
  2. N. Skivesen, R. Horvath, and H. Pedersen, “Peak-type and dip-type metal-clad waveguide sensing,” Opt. Lett. 30, 1659–1661 (2005). [CrossRef]
  3. G. Tollin and Z. Salamon, “Optical anisotropy in lipid bilayer membranes: coupled plasmon waveguide resonance measurements of molecular orientation, polarizability and shape,” Biophys. J. 80, 1557–1567 (2001). [CrossRef]
  4. Z. Salamon, G. Lindblom, and G. Tollin, “Plasmon-waveguide resonance and impedance spectroscopy studies of the interaction between penetratin and supported lipid bilayer membranes,” Biophys. J. 84, 1796–1807 (2003). [CrossRef]
  5. M. Zourob and N. Goddard, “Metal clad leaky waveguides for chemical and biosensing applications,” Biosens. Bioelectron. 20, 1718–1727 (2005). [CrossRef]
  6. S. Taya, M. Shabat, H. Khalil, and D. Jäger, “Theoretical analysis of TM nonlinear asymmetrical waveguide optical sensors,” Sens. Actuators A 147, 137–141 (2008). [CrossRef]
  7. S. Taya, M. Shabat, and H. Khalil, “Enhancement of Sensitivity in optical sensors using left-handed materials,” Optik 120, 504–508 (2009). [CrossRef]
  8. S. Taya, M. Shabat, and H. Khalil, “Nonlinear planar asymmetrical optical waveguides for sensing applications,” Optik 121, 860–865 (2010). [CrossRef]
  9. S. Taya and T. El-Agez, “Comparing optical sensing using slab waveguides and total internal reflection ellipsometry,” Turk. J. Phys. 35, 31–36 (2011).
  10. T. El-Agez and S. Taya, “Theoretical spectroscopic scan of the sensitivity of asymmetric slab waveguide sensors,” Opt. Appl. 41, 89–95 (2011).
  11. S. Taya and T. El-Agez, “Reverse symmetry optical waveguide sensor using plasma substrate,” J. Opt. 13, 075701(2011). [CrossRef]
  12. V. Veselago, “The electrodynamics of subctance with simultaneously negative index values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  13. K. Park, B. Lee, C. Fu, and Z. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22, 1016–1023 (2005). [CrossRef]
  14. A. Grbic and G. Eleftheriadesm, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92, 117403 (2004). [CrossRef]
  15. W. Cai, D. Genov, and V. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72, 193101 (2005).
  16. D. Schurig, J. Mock, and B. Justice, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef]
  17. P. Markoš and C. Soukoulis, “Wave propagation,” in From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University, 2008).
  18. V. Podolskiyand and E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30, 75–77 (2005). [CrossRef]
  19. P. Tien, “Integrated optics and new wave phenomena in optical waveguides,” Rev. Mod. Phys. 49, 361–420 (1977). [CrossRef]
  20. A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun. 3, 254–258 (1971). [CrossRef]
  21. A. S. Vioktalamo, R. Watanabe, and T. Ishihara, “Permeability enhancement of stratified metal dielectric metamaterial in optical regime,” Photon. Nanostr. Fundam. Appl., doi:10.1016/j.photonics.2011.08.005 (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited