OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 977–983

Visible transmission windows in infrared hollow-core photonic bandgap fiber: characterization and response to pressure

Rafael E. P. de Oliveira, Christiano J. S. de Matos, Gisele E. Nunes, and Ivan H. Bechtold  »View Author Affiliations

JOSA B, Vol. 29, Issue 5, pp. 977-983 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (915 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Core guidance within several bands in the visible region of the spectrum is observed and characterized in hollow-core photonic crystal fibers designed to operate at a wavelength of 1550 nm. Experiments show that in these transmission bands, light is likely to be confined to the core due both to antiresonance in the silica ring around the core and to low coupling to microstructured cladding modes. The bands present losses of 1dB/cm and are highly dependent on the exact fiber structure and light polarization. Even small physical changes due to pressure are found to affect the transmission intensity and polarization. The response to pressure was then investigated, focusing on the development of sensors based on intensity or polarization interrogation.

© 2012 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2400) Fiber optics and optical communications : Fiber properties
(260.5430) Physical optics : Polarization
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(120.5475) Instrumentation, measurement, and metrology : Pressure measurement

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 10, 2011
Revised Manuscript: December 17, 2011
Manuscript Accepted: December 21, 2011
Published: April 13, 2012

Rafael E. P. de Oliveira, Christiano J. S. de Matos, Gisele E. Nunes, and Ivan H. Bechtold, "Visible transmission windows in infrared hollow-core photonic bandgap fiber: characterization and response to pressure," J. Opt. Soc. Am. B 29, 977-983 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Russell, “Photonic crystal fiber: finding the holey grail,” Opt. Photon. News 18(7), 26–31 (2007). [CrossRef]
  2. P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006). [CrossRef]
  3. G. Humbert, J. Knight, G. Bouwmans, P. Russell, D. Williams, P. Roberts, and B. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12, 1477–1484 (2004). [CrossRef]
  4. W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, “A photonic crystal fiber sensor for pressure measurements,” IEEE Trans. Instrum. Meas. 55, 1119–1123 (2006). [CrossRef]
  5. H. K. Gahir and D. Khanna, “Design and development of a temperature-compesated fiber optic polarimetric pressure sensor based on photonic crystal fiber at 1550 nm,” Appl. Opt. 46, 1184–1189 (2007). [CrossRef]
  6. T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005). [CrossRef]
  7. T. T Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, Jun Li, S. Gauza, and S.-T. Wu, “Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber,” Appl. Opt. 45, 2261–2264 (2006). [CrossRef]
  8. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999). [CrossRef]
  9. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russel, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005). [CrossRef]
  10. X. Chen, M. Li, N. Venkataraman, M. T. Gallagher, W. A. Wood, A. M. Crowley, J. P. Carberry, L. A. Zenteno, and K. W. Koch, “Highly birefringent hollow-core photonic bandgap fiber,” Opt. Express 12, 3888–3893 (2004). [CrossRef]
  11. P. S. Light, F. Couny, Y. Y. Wang, N. V. Wheeler, P. J. Roberts, and F. Benabid, “Double photonic bandgap hollow-core photonic crystal fiber,” Opt. Express 17, 16238–16243 (2009). [CrossRef]
  12. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004). [CrossRef]
  13. R. E. P. de Oliveira, C. J. S. de Matos, J. G. Hayashi, and C. M. B. Cordeiro, “Pressure sensing based on nonconventional air-guiding transmission windows in hollow-core photonic crystal fibers,” J. Lightwave Technol. 27, 1605–1609 (2009). [CrossRef]
  14. P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadworth, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13, 8277–8285 (2005). [CrossRef]
  15. F. Gérôme, R. Jamier, J-L. Auguste, G. Humbert, and J-C. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35, 1157–1159 (2010). [CrossRef]
  16. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. J. Russel, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15, 12680–12685 (2007). [CrossRef]
  17. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007). [CrossRef]
  18. A. Bozolan, R. M. Gerosa, C. J. S. de Matos, M. A. Romero, and C. M. B. Cordeiro, “Sealed liquid-core photonic crystal fibers for practical nonlinear optics, nanophotonics, and sensing applications,” Proc. SPIE 7839, 78390A (2010). [CrossRef]
  19. V. Zucolotto, P. J. Strack, F. R. Santos, D. T. Balogh, C. J. L. Constantino, C. R. Mendonça, and O. N. Oliveira, “Molecular engineering strategies to control photo-induced birefringence and surface-relief gratings on layer-by-layer films from an azopolymer,” Thin Solid Films 453, 110–113 (2004). [CrossRef]
  20. B. Larrión, M. Hernáez, F. J. Arregui, J. Goicoechea, J. Bravo, and I. R. Matías, “Photonic crystal fiber temperature sensor based on quantum dot nanocoatings,” J. Sensors 2009, 932471 (2009). [CrossRef]
  21. Y. Ohdaira, K. Noguchi, K. Shinbo, K. Kato, and F. Kaneko, “Nano-fabrication of surface relief gratings on azo dye films utilizing interference of evanescent waves on prism,” Colloids Surf. A: Physiochem. Eng. Aspects 284, 556–560 (2006). [CrossRef]
  22. Suryajaya, A. Nabok, F. Davis, A. Hassan, S. P. J. Higson, and J. Evans-Freeman, “Optical and AFM study of electrostatically assembled films of CdS and ZnS colloid nanoparticles,” Appl. Surf. Sci. 254, 4891–4898 (2008). [CrossRef]
  23. T. Birks, D. Bird, T. Hedley, J. Pottage, and P. Russell, “Scaling laws and vector effects in bandgap-guiding fibres,” Opt. Express 12, 69–74 (2004). [CrossRef]
  24. M. Wegmuller, M. Legre, N. Gisin, T. P. Hansen, C. Jakobsen, and J. Broeng, “Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm,” Opt. Express 13, 1457–1467 (2005). [CrossRef]
  25. F. Poletti, N. G. R. Broderick, D. J. Richardson, and T. M. Monro, “The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers,” Opt. Express 13, 9115–9124 (2005). [CrossRef]
  26. M. S. Alam, K. Saitoh, and M. Koshiba, “High group birefringence in air-core photonic bandgap fibers,” Opt. Lett. 30, 824–826 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited