OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1157–1164

Design and analysis of a gallium nitride-on-sapphire tunable photonic crystal directional coupler

Erman Engin, Jeremy L. O’Brien, and Martin J. Cryan  »View Author Affiliations


JOSA B, Vol. 29, Issue 6, pp. 1157-1164 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001157


View Full Text Article

Enhanced HTML    Acrobat PDF (1662 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents two- and three-dimensional (2D and 3D) finite difference time domain modeling and plane wave expansion results for 2D photonic crystal waveguides in GaN-on-sapphire with an AlN lattice matching layer. The low refractive index contrast between GaN and sapphire restricts operation to above the light line, and losses have been calculated to be in the region of 0.10.3dB/μm, depending on hole depth, which in short devices could be acceptable. A slow-light directional coupler is then designed that has an overall length of 5 μm for 50%–50% coupling at 800 nm. Device tuning is then discussed in terms of both thermo-optic and electro-optic effects, and tuning from 50%–50% to 93%–7% coupling is shown for a 0.1% change in refractive index.

© 2012 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: October 19, 2011
Revised Manuscript: December 16, 2011
Manuscript Accepted: January 18, 2012
Published: May 3, 2012

Citation
Erman Engin, Jeremy L. O’Brien, and Martin J. Cryan, "Design and analysis of a gallium nitride-on-sapphire tunable photonic crystal directional coupler," J. Opt. Soc. Am. B 29, 1157-1164 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-6-1157


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82, 1326–1328 (2003). [CrossRef]
  2. A. Chowdhury, M. N. Hock, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077–1079 (2003). [CrossRef]
  3. C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19, 10462–10470 (2011). [CrossRef]
  4. Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett. 99, 161119 (2011). [CrossRef]
  5. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008). [CrossRef]
  6. J. M. Dawson, R. P. Tompkins, J. R. Nightingale, S. Yeldandi, K. Jo, X. A. Cao, L. A. Hornak, D. Korakakis, T. Myers, and A. Timperman, “Design and characterization of optofluidic photonic crystal structures for the detection of fluorescent-labeled biomolecules,” ECS Trans. 13, 27–38 (2008). [CrossRef]
  7. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253–283 (2004). [CrossRef]
  8. E. G. Judith, J. Wijnhoven, and L.V. Willem, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802–804 (1998). [CrossRef]
  9. G. Tizazu, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Photopatterning, etching, and derivatization of self-assembled monolayers of phosphonic acids on the native oxide of titanium,” Langmuir 25, 10746–10753 (2009). [CrossRef]
  10. K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063103 (2008). [CrossRef]
  11. S. Lis, R. Dylewicz, K. Ptasiński, and S. Patela, “Photonic crystal microcavity in GaN-on-sapphire slab waveguide for sensor applications,” Proc. SPIE 7713, 77131N (2010). [CrossRef]
  12. A. Rosenberg, M. Carter, J. Casey, M. Kim, R. Holm, R. Henry, C. Eddy, V. Shamamian, K. Bussmann, S. Shi, and D. Prather, “Guided resonances in asymmetrical GaN photonic crystal slabs observed in the visible spectrum,” Opt. Express 13, 6564–6571 (2005). [CrossRef]
  13. D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. L. V. d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87, 101106 (2005). [CrossRef]
  14. R. Ahmad, Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12084–12089 (2008). [CrossRef]
  15. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009). [CrossRef]
  16. M. Belotti, M. Galli, D. Gerace, L. C. Andreani, G. Guizzetti, A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “All-optical switching in silicon-on-insulator photonic wire nano-cavities,” Opt. Express 18, 1450–1461 (2010). [CrossRef]
  17. J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93, 051117 (2008). [CrossRef]
  18. B. Rong, H. W. M. Salemink, E. M. Roeling, R. van der Heijden, F. Karouta, and E. van der Drift, “Fabrication of two dimensional GaN nanophotonic crystals,” J. Vac. Sci. Technol. B 25, 2632–2636 (2007). [CrossRef]
  19. Z. Yang, R. N. Wang, S. Jia, D. Wang, B. S. Zhang, K. M. Lau, and K. J. Chen, “Mechanical characterization of suspended GaN microstructures fabricated by GaN-on-patterned-silicon technique,” Appl. Phys. Lett. 88, 041913 (2006). [CrossRef]
  20. Y.-S. Choi, K. Hennessy, R. Sharma, E. Haberer, Y. Gao, S. P. DenBaars, S. Nakamura, E. L. Hu, and C. Meier, “GaN blue photonic crystal membrane nanocavities,” Appl. Phys. Lett. 87, 243101 (2005). [CrossRef]
  21. C.-H. Lin, K.-C. Shen, D.-M. Yeh, C.-Y. Chen, Z.-D. Mu, L.-H. Peng, and C. C. Yang, “GaN Defect photonic crystal membrane laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThJ1.
  22. T. F. Kraus, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996). [CrossRef]
  23. H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Béraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000). [CrossRef]
  24. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003). [CrossRef]
  25. Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, and K. Inoue, “Low propagation loss of 0.76  dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length,” Opt. Express 12, 1090–1096(2004). [CrossRef]
  26. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33, 147–149 (2008). [CrossRef]
  27. N. A. Hueting, E. Engin, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the International Conference on Nitride SemiConductors, Glasgow, July10–152011.
  28. E. Engin, N. A. Hueting, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the Semiconductor Integrated OptoElectronics Conference, Cardiff, April 18–202011.
  29. M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163–1165 (2002). [CrossRef]
  30. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef]
  31. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  32. A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68, 233102 (2003). [CrossRef]
  33. L. H. Frandsen, V. A. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006). [CrossRef]
  34. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef]
  35. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008). [CrossRef]
  36. T. Cao, Y.-L. D. Ho, P. J. Heard, L. P. Barry, A. E. Kelly, and M. J. Cryan, “Fabrication and measurement of a photonic crystal waveguide integrated with a semiconductor optical amplifier,” J. Opt. Soc. Am. B 26, 768–777 (2009). [CrossRef]
  37. D.-X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delâge, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,” Opt. Express 15, 3149–3155 (2007). [CrossRef]
  38. N. Yamamoto, T. Ogawa, and K. Komori, “Photonic crystal directional coupler switch with small switching length and wide bandwidth,” Opt. Express 14, 1223–1229 (2006). [CrossRef]
  39. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33, 147–149 (2008). [CrossRef]
  40. M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Calculation of losses in 2-D photonic crystal membrane waveguides using the 3-D FDTD method,” IEEE Photon. Technol. Lett. 17, 58–60 (2005). [CrossRef]
  41. Martin J. Cryan, “On the modeling of losses in short length photonic crystal waveguides,” J. Lightwave Technol. 27, 4841–4847 (2009). [CrossRef]
  42. N. Watanabe, T. Kimoto, and J. Suda, “Determination of the thermo-optic coefficients of GaN and AlN up to 515 °C,” Phys. Status Solidi C 6, S776–S779 (2009). [CrossRef]
  43. D. W. Kim, Y. J. Sung, J. W. Park, and G. Y. Yeom, “A study of transparent indium tin oxide (ITO) contact to p-GaN,” Thin Solid Films 398–399, 87–92 (2001). [CrossRef]
  44. C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts,” IEEE Photon. Technol. Lett. 13, 848–850 (2001). [CrossRef]
  45. X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electro-optic effect,” Appl. Phys. Lett. 67, 1349–1351 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited