OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1165–1171

Photonic structures of metal-coated chiral spheres

Aristi Christofi and Nikolaos Stefanou  »View Author Affiliations

JOSA B, Vol. 29, Issue 6, pp. 1165-1171 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (737 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A detailed analysis of the optical properties of photonic structures of metal-coated chiral spheres, calculated by the full electrodynamic layer-multiple-scattering method, is presented. Easily tunable narrow bands, originating from particle-like plasmon modes of the metallic shells, hybridize with the extended bands of the underlying effective chiral medium and give rise to sizable partial gaps and strong band bending with consequent negative-slope dispersion. The photonic band diagram is discussed in the light of group theory, in conjunction with relevant transmission spectra, and the occurrence of polarization-selective transmission and negative refraction for a short range of angles of incidence is demonstrated.

© 2012 Optical Society of America

OCIS Codes
(160.1585) Materials : Chiral media
(160.3918) Materials : Metamaterials
(160.5298) Materials : Photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: December 21, 2011
Revised Manuscript: February 20, 2012
Manuscript Accepted: March 1, 2012
Published: May 9, 2012

Aristi Christofi and Nikolaos Stefanou, "Photonic structures of metal-coated chiral spheres," J. Opt. Soc. Am. B 29, 1165-1171 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Chongjun, Q. Bai, Y. Miao, and Q. Ruhu, “Two-dimensional photonic band structure in the chiral medium transfer matrix method,” Opt. Commun. 142, 179–183 (1997). [CrossRef]
  2. I. E. Psarobas, N. Stefanou, and A. Modinos, “Photonic crystals of chiral spheres,” J. Opt. Soc. Am. A 16, 343–347 (1999). [CrossRef]
  3. C. He, M. H. Lu, R. C. Yin, T. Fan, and Y. F. Chen, “Chiral properties in a two-dimensional chiral polaritonic photonic crystal,” J. Appl. Phys. 108, 073103 (2010). [CrossRef]
  4. A. Christofi, N. Stefanou, and G. Gantzounis, “Photonic eigenmodes and light propagation in periodic structures of chiral nanoparticles,” Phys. Rev. B 83, 245126 (2011). [CrossRef]
  5. U. Gubler and C. Bosshard, “Optical material: a new twist for nonlinear optics,” Nat. Mater. 1, 209–210 (2002). [CrossRef]
  6. A. N. Lagarkov, V. N. Semenenko, V. A. Chistyaev, D. E. Ryabov, S. A. Tretyakov, and C. R. Simovski, “Resonance properties of Bi-Helix media at microwaves,” Electromagnetics 17, 213–237 (1997). [CrossRef]
  7. A. N. Lagarkov, V. N. Semenenko, V. N. Kisel, and V. A. Chistyaev, “Development and simulation of microwave artificial magnetic composites utilizing nonmagnetic inclusions,” J. Magn. Magn. Mater. 258–259, 161–166 (2003). [CrossRef]
  8. S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves. Appl. 17, 695–706 (2003). [CrossRef]
  9. J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004). [CrossRef]
  10. C. Monzon and D. W. Forester, “Negative refraction and focusing of circularly polarized waves in optically active media,” Phys. Rev. Lett. 95, 123904 (2005). [CrossRef]
  11. S. Zhang, Y. S. Park, J. Li, X. C. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009). [CrossRef]
  12. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009). [CrossRef]
  13. X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81, 075119 (2010). [CrossRef]
  14. C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, Phys. Rev. Lett. 105, 247401 (2010). [CrossRef]
  15. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003). [CrossRef]
  16. T. V. Teperik, V. V. Popov, and F. J. G. de Abajo, “Radiative decay of plasmons in a metallic nanoshell,” Phys. Rev. B 69, 155402 (2004). [CrossRef]
  17. C. Tserkezis, G. Gantzounis, and N. Stefanou, “Collective plasmonic modes in ordered assemblies of metallic nanoshells,” J. Phys. Condens. Matter 20, 075232 (2008). [CrossRef]
  18. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, 1976).
  19. A. Lakhtakia, Beltrami Fields in Chiral Media (World Scientific, 1994).
  20. Y. Tajitsu, R. Hosoya, T. Maruyama, M. Aoki, Y. Shikinami, M. Date, and E. Fukada, “Huge optical rotatory power of uniaxially oriented film of poly-L-lactic acid,” J. Mater. Sci. Lett. 18, 1785–1787 (1999). [CrossRef]
  21. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  22. N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998). [CrossRef]
  23. N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000). [CrossRef]
  24. N. Stefanou, C. Tserkezis, and G. Gantzounis, “Plasmonic excitations in ordered assemblies of metallic nanoshells,” Proc. SPIE 6989, 698910 (2008). [CrossRef]
  25. C. F. Bohren, “Light scattering by an optically active sphere,” Chem. Phys. Lett. 29, 458–462 (1974). [CrossRef]
  26. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  27. J. F. Cornwell, Group Theory and Electronic Energy Bands in Solids (North-Holland, 1969).
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited