OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1187–1193

Slow light based on optical surface modes of two-dimensional photonic crystals

Hamza Kurt, Nur Erim, and Kadir Üstün  »View Author Affiliations

JOSA B, Vol. 29, Issue 6, pp. 1187-1193 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (826 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate slow light properties of optical surface modes sustaining at the interface of two-dimensional photonic crystals and uniform medium (air). The manipulation of the structural parameters at the surface governs the modal field distribution of the surface state. The spectral and temporal behaviors of the slow mode are numerically explored by utilizing both plane-wave expansion and finite-difference time-domain methods. We show that the group index and bandwidth can be tuned within a wide range. The distortion free optical pulse propagation is supported by the presence of low group velocity dispersion behavior of the slow light surface mode photonic structure.

© 2012 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(260.2030) Physical optics : Dispersion
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Integrated Optics

Original Manuscript: January 17, 2012
Revised Manuscript: February 26, 2012
Manuscript Accepted: March 8, 2012
Published: May 9, 2012

Hamza Kurt, Nur Erim, and Kadir Üstün, "Slow light based on optical surface modes of two-dimensional photonic crystals," J. Opt. Soc. Am. B 29, 1187-1193 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2, 465–473 (2008). [CrossRef]
  2. T. F. Krauss, “Why do we need slow light,” Nat. Photon. 2, 448–450 (2008). [CrossRef]
  3. J. D. Joannopoulas, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of the Light (Princeton University, 1995).
  4. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34, 1072–1074 (2009). [CrossRef]
  5. O. Khayam and H. Benisty, “General recipe for flatbands in photonic crystal waveguides,” Opt. Express 17, 14634–14648 (2009). [CrossRef]
  6. L. Dai and C. Jiang, “Ultrawideband low dispersion slow light waveguides,” J. Lightwave Technol. 27, 2862–2868 (2009). [CrossRef]
  7. J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008). [CrossRef]
  8. J. Hou, H. Wu, D. S. Citrin, W. Mo, D. Gao, and Z. Zhou, “Wideband slow light in chirped slot photonic-crystal coupled waveguides,” Opt. Express 18, 10567–10580 (2010). [CrossRef]
  9. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004). [CrossRef]
  10. D. Mori and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguides,” Appl. Phys. Lett. 85, 1101–1103 (2004). [CrossRef]
  11. M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Slow-light band-edge waveguides for tunable time delays,” Opt. Express 13, 7145–7159 (2005). [CrossRef]
  12. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006). [CrossRef]
  13. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008). [CrossRef]
  14. S. Rawal, R. K. Sinha, and R. M. De La Rue, “Slow light miniature devices with ultra-flattened dispersion in silicon-on-insulator photonic crystal,” Opt. Express 17, 13315–13325 (2009). [CrossRef]
  15. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009). [CrossRef]
  16. A. Saynatjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007). [CrossRef]
  17. J. Liang, L-Y. Ren, M-J. Yun, X. Han, and X-J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011). [CrossRef]
  18. D. Wang, J. Zhang, L. Yuan, J. Lei, S. Chen, J. Han, and S. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011). [CrossRef]
  19. L. Dai, T. Li, and C. Jiang, “Wideband ultralow high-order-dispersion photonic crystal slow-light waveguide,” J. Opt. Soc. Am. B 28, 1622–1626 (2011). [CrossRef]
  20. T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253 (2008). [CrossRef]
  21. R. Matzen, J. S. Jensen, and O. Sigmund, “Systematic design of slow-light photonic waveguides,” J. Opt. Soc. Am. B 28, 2374–2382 (2011). [CrossRef]
  22. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef]
  23. J. Scheuer, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Coupled resonator optical waveguides: toward the slowing and storage of light,” Opt. Photon. News 16, 36–40 (2005). [CrossRef]
  24. J. B. Khurgin, “Expanding the bandwidth of slow-light photonic devices based on coupled resonators,” Opt. Lett. 30, 513–515 (2005). [CrossRef]
  25. M. L. Cooper, G. Gupta, M. A. Schneider, W. M. J. Green, S. Assefa, F. Xia, D. K. Gifford, and S. Mookherjea, “Waveguide dispersion effects in silicon-on-insulator coupled-resonator optical waveguides,” Opt. Lett. 35, 3030–3032 (2010). [CrossRef]
  26. D. O’Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, “Coupled photonic crystal heterostructure nanocavities,” Opt. Express 15, 1228–1233 (2007). [CrossRef]
  27. K. Üstün and H. Kurt, “Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides,” Opt. Express 18, 21155–21161 (2010). [CrossRef]
  28. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991). [CrossRef]
  29. F. Ramos-Mendieta and P. Halevi, “Surface electromagnetic waves in two-dimensional photonic crystals: effect of the position of the surface plane,” Phys. Rev. B 59, 15112–15120 (1999). [CrossRef]
  30. S. Enoch, E. Popov, and N. Bonod, “Analysis of the physical origin of surface modes on finite-size photonic crystals,” Phys. Rev. B 72, 155101 (2005). [CrossRef]
  31. A. I. Rahachou and I. V. Zozoulenko, “Waveguiding properties of surface states in photonic crystals,” J. Opt. Soc. Am. B 23, 1679–1683 (2006). [CrossRef]
  32. H. Chen, K. K. Tsia, and A. W. Poon, “Surface modes in two-dimensional photonic crystal slabs with a flat dielectric margin,” Opt. Express 14, 7368–7377 (2006). [CrossRef]
  33. M. Che and Z-Y. Li, “Analysis of surface modes in photonic crystals by a plane-wave transfer-matrix method,” J. Opt. Soc. Am. A 25, 2177–2184 (2008). [CrossRef]
  34. T-W. Lu, S-P. Lu, L-H. Chiu, and P-T. Lee, “Square lattice photonic crystal surface mode lasers,” Opt. Express 18, 26461–26468 (2010). [CrossRef]
  35. S. Xiao, and M. Qiu, “Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals,” J. Opt. Soc. Am. B 24, 1225–1229 (2007). [CrossRef]
  36. T. Lu, Y. Hsiao, W. Ho, and P-T. Lee, “High-index sensitivity of surface mode in photonic crystal hetero-slab-edge microcavity,” Opt. Lett. 35, 1452–1454 (2010). [CrossRef]
  37. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef]
  38. H. Kurt, K. Üstün, and L. Ayas, “Study of different spectral regions and delay bandwidth relation in slow light photonic crystal waveguides,” Opt. Express 18, 26965–26977 (2010). [CrossRef]
  39. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702(2010). [CrossRef]
  40. C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt. 12, 104003 (2010). [CrossRef]
  41. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18, 22915–22927 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited