OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1203–1207

Robust Toffoli gate originating from Stark shifts

Xiao-Qiang Shao, Tai-Yu Zheng, and Shou Zhang  »View Author Affiliations

JOSA B, Vol. 29, Issue 6, pp. 1203-1207 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (306 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method for synthesizing the Toffoli gate is proposed based solely on the Stark shifts of three superconducting quantum interference devices (SQUIDs). This scheme is robust against the effect of decoherence, since it operates with no excitation of SQUIDs and the coplanar waveguide cavity. The obtained fidelity of the Toffoli gate is high, corresponding to the current typical experimental parameters, and an equivalent physical model for conveniently addressing qubits is also constructed in the coupled-cavity array system.

© 2012 Optical Society of America

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: December 6, 2011
Manuscript Accepted: February 13, 2012
Published: May 9, 2012

Xiao-Qiang Shao, Tai-Yu Zheng, and Shou Zhang, "Robust Toffoli gate originating from Stark shifts," J. Opt. Soc. Am. B 29, 1203-1207 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. P. DiVincenzo, “Two-bit gates are universal for quantum computation,” Phys. Rev. A 51, 1015–1022 (1995). [CrossRef]
  2. E. Solano, M. França Santos, and P. Milman, “Quantum phase gate with a selective interaction,” Phys. Rev. A 64, 024304 (2001). [CrossRef]
  3. M. S. Zubairy, M. Kim, and M. O. Scully, “Cavity-QED-based quantum phase gate,” Phys. Rev. A 68, 033820 (2003). [CrossRef]
  4. X. X. Yi, X. H. Su, and L. You, “Conditional quantum phase gate between two 3-state atoms,” Phys. Rev. Lett. 90, 097902 (2003). [CrossRef]
  5. L. You, X. X. Yi, and X. H. Su, “Quantum logic between atoms inside a high-Q optical cavity,” Phys. Rev. A 67, 032308 (2003). [CrossRef]
  6. S. B. Zheng, “Quantum logic gates for two atoms with a single resonant interaction,” Phys. Rev. A 71, 062335 (2005). [CrossRef]
  7. Y. F. Xiao, X. B. Zou, and G. C. Guo, “Implementing a conditional N-qubit phase gate in a largely detuned optical cavity,” Phys. Rev. A 75, 014302 (2007). [CrossRef]
  8. X. B. Zou, Y. F. Xiao, S. B. Li, Y. Yang, and G. C. Guo, “Quantum phase gate through a dispersive atom-field interaction,” Phys. Rev. A 75, 064301 (2007). [CrossRef]
  9. G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, “Robust and fast geometric quantum computation with multiqubit gates in cavity QED,” Phys. Rev. A 79, 064303 (2009). [CrossRef]
  10. W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010). [CrossRef]
  11. H. Z. Wu, Z. B. Yang, and S. B. Zheng, “Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade,” Phys. Rev. A 82, 034307(2010). [CrossRef]
  12. C. P. Yang, S. B. Zheng, and F. Nori, “Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity,” Phys. Rev. A 82, 062326 (2010). [CrossRef]
  13. T. Toffoli, “Reversible Computing,” in Proceedings of the 7th Colloquium on Automata, Languages and Programming, J. W. de Bakker and J. van Leeuwen, eds., Lecture Notes in Computer Science, Vol. 84 (Springer-Verlag, 1980), pp. 632–644.
  14. L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883–887 (2001). [CrossRef]
  15. W. L. Yang, C. Y. Chen, and M. Feng, “Implementation of three-qubit Grover search in cavity quantum electrodynamics,” Phys. Rev. A 76, 054301 (2007). [CrossRef]
  16. D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152–2155 (1998). [CrossRef]
  17. M. Sarovar and G. J. Milburn, “Continuous quantum error correction,” Proc. SPIE 5842, 158 (2005). [CrossRef]
  18. X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, and K. H. Yeon, “One-step implementation of the Toffoli gate via quantum Zeno dynamics,” Phys. Lett. A 374, 28–33 (2009). [CrossRef]
  19. C. Y. Chen, M. Feng, and K. L. Gao, “Toffoli gate originating from a single resonant interaction with cavity QED,” Phys. Rev. A 73, 064304 (2006). [CrossRef]
  20. X. Q. Shao, A. D. Zhu, S. Zhang, J. S. Chung, and K. H. Yeon, “Efficient scheme for implementing an N-qubit Toffoli gate by a single resonant interaction with cavity quantum electrodynamics,” Phys. Rev. A 75, 034307 (2007). [CrossRef]
  21. J. Du, M. Shi, J. Wu, X. Zhou, and R. Han, “Implementing universal multiqubit quantum logic gates in three- and four-spin systems at room temperature,” Phys. Rev. A 63, 042302 (2001). [CrossRef]
  22. J. Fiurášek, “Linear-optics quantum Toffoli and Fredkin gates,” Phys. Rev. A 73, 062313 (2006). [CrossRef]
  23. T. C. Ralph, K. J. Resch, and A. Gilchrist, “Efficient Toffoli gates using qudits,” Phys. Rev. A 75, 022313 (2007). [CrossRef]
  24. M. S. Tame, K. Özdemir Ş, M. Koashi, N. Imoto, and M. S. Kim, “Compact Toffoli gate using weighted graph states,” Phys. Rev. A 79, 020302(R) (2009). [CrossRef]
  25. T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, and R. Blatt, “Realization of the quantum Toffoli gate with trapped ions,” Phys. Rev. Lett. 102, 040501 (2009). [CrossRef]
  26. R. Ionicioiu, T. P. Spiller, and W. J. Munro, “Generalized Toffoli gates using qudit catalysis,” Phys. Rev. A 80, 012312 (2009). [CrossRef]
  27. J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett. 74, 4091–4094 (1995). [CrossRef]
  28. A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083–4086 (1995). [CrossRef]
  29. T. Sleator and H. Weinfurter, “Realizable universal quantum logic gates,” Phys. Rev. Lett. 74, 4087–4090 (1995). [CrossRef]
  30. N. A. Gershenfeld and I. L. Chuang, “Bulk spin-resonance quantum computation,” Science 275, 350–356 (1997). [CrossRef]
  31. Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box,” Nature 398, 786–788 (1999). [CrossRef]
  32. K. Tordrup and K. Mølmer, “Quantum computing with a single molecular ensemble and a Cooper-pair box,” Phys. Rev. A 77, 020301(R) (2008). [CrossRef]
  33. Z. Kim, B. Suri, V. Zaretskey, S. Novikov, K. D. Osborn, A. Mizel, F. C. Wellstood, and B. S. Palmer, “Decoupling a Cooper-pair box to enhance the lifetime to 0.2 ms,” Phys. Rev. Lett. 106, 120501 (2011). [CrossRef]
  34. A. Shnirman, G. Schön, and Z. Hermon, “Quantum manipulations of small Josephson junctions,” Phys. Rev. Lett. 79, 2371–2374 (1997). [CrossRef]
  35. X. B. Wang and K. Matsumoto, “Nonadiabatic detection of the geometric phase of the macroscopic quantum state with a symmetric SQUID,” Phys. Rev. B 65, 172508 (2002). [CrossRef]
  36. G. Wendin and V. Shumeiko, “Quantum bits with Josephson junctions,” Low Temp. Phys. 33, 724–744(2007). [CrossRef]
  37. C. P. Yang, S. I. Chu, and S. Han, “Quantum information transfer and entanglement with SQUID qubits in cavity QED: a dark-state scheme with tolerance for nonuniform device parameter,” Phys. Rev. Lett. 92, 117902 (2004). [CrossRef]
  38. C. P. Yang, “A proposal for implementing an n-qubit controlled-rotation gate with three-level superconducting qubit systems in cavity QED,” J. Phys. Condens. Matter 23, 225702 (2011). [CrossRef]
  39. B. Ghosh, A. S. Majumdar, and N. Nayak, “Control of atomic entanglement by dynamic Stark effect,” J. Phys. B: At. Mol. Opt. Phys. 41, 065503 (2008). [CrossRef]
  40. P. Bohlouli-Zanjani, J. A. Petrus, and J. D. D. Martin, “Enhancement of Rydberg atom interactions using ac Stark shifts,” Phys. Rev. Lett. 98, 203005 (2007). [CrossRef]
  41. A. Retzker and M. B. Plenio, “Fast cooling of trapped ions using the dynamical Stark shift,” New J. Phys. 9, 279 (2007). [CrossRef]
  42. C. P. Yang and S. Han, “Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED,” Phys. Rev. A 73, 032317 (2006). [CrossRef]
  43. M. A. Nielsen and I. L. ChuangQuantum Computation and Quantum Information (Cambridge University, 2000).
  44. M. O. Scully and M. S. ZubairyQuantum Optics (Cambridge University, 1997).
  45. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited