OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1231–1236

Spectral broadening of incoherent nanosecond pulses in a fiber amplifier

Alexey G. Kuznetsov, Evgeniy V. Podivilov, and Sergey A. Babin  »View Author Affiliations

JOSA B, Vol. 29, Issue 6, pp. 1231-1236 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (269 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Amplification of incoherent light pulses in a relatively short active fiber is treated. Spectral broadening due to the self-phase modulation effect at negligibly small dispersion has been studied theoretically. The expression for the shape of the output spectrum has been obtained for input pulses of arbitrary temporal and spectral shape at various gain coefficients. The expression is found to be simplified in case of a hyperbolic secant temporal shape. The calculated shapes have been compared with the experimentally measured spectra for Q -switched fiber laser nanosecond pulses amplified in Yb-doped fiber, demonstrating excellent agreement of theory and experiment. The spectrum of the output pulse is shown to be composed of two different-scale structures: a narrow central part copying the initial shape and broad exponential tails that grow with increasing output power.

© 2012 Optical Society of America

OCIS Codes
(140.3540) Lasers and laser optics : Lasers, Q-switched
(190.3270) Nonlinear optics : Kerr effect
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 20, 2011
Revised Manuscript: February 7, 2012
Manuscript Accepted: February 8, 2012
Published: May 9, 2012

Alexey G. Kuznetsov, Evgeniy V. Podivilov, and Sergey A. Babin, "Spectral broadening of incoherent nanosecond pulses in a fiber amplifier," J. Opt. Soc. Am. B 29, 1231-1236 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  2. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000). [CrossRef]
  3. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fibers,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  4. S. V. Smirnov, J. D. Ania-Castañón, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12, 122–147 (2006). [CrossRef]
  5. J. C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photon. Technol. Lett. 15, 1698–1700 (2003). [CrossRef]
  6. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24, 1729–1738 (2007). [CrossRef]
  7. V. E. Zakharov, V. Lvov, and G. Falkovich, Wave Turbulence (Springer-Verlag, 1992).
  8. S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castanon, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77, 033803 (2008). [CrossRef]
  9. D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett. 35, 3288–3290 (2010). [CrossRef]
  10. E. G. Turitsyna, S. K. Turitsyn, and V. K. Mezentsev, “Numerical investigation of the impact of reflectors on spectral performance of Raman fibre laser,” Opt. Express 18, 4469–4477 (2010). [CrossRef]
  11. N. Dalloz, S. Randoux, and P. Suret, “Influence of dispersion of fiber Bragg grating mirrors on formation of optical power spectrum in Raman fiber lasers,” Opt. Lett. 35, 2505–2507 (2010). [CrossRef]
  12. D. B. S Soh, J. P. Koplow, S. W. Moore, Schroder KL, and Hsu WL., “The effect of dispersion on spectral broadening of incoherent continuous-wave light in optical fibers,” Opt. Express 18, 22393–22405 (2010). [CrossRef]
  13. S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express 19, 8394–8405 (2011). [CrossRef]
  14. M. J. F. Digonnet, Rare Earth Fiber Lasers (Marcel Dekker, 2001).
  15. V. N. Philippov, J. K. Sahu, C. A. Codemard, J. Nilsson, and G. N. Pearson, “All-fiber 0.4−mJ high-coherence eye-safe optical source,” Proc. SPIE 5620, 284–288 (2004). [CrossRef]
  16. A. G. Kuznetsov and S. A. Babin, “Q-switched fiber laser with spectral control for frequency doubling,” Laser Phys. 20, 1266–1269 (2010). [CrossRef]
  17. A. V. Denisov, A. G. Kuznetsov, D. S. Kharenko, S. I. Kablukov, and S. A. Babin, “Frequency doubling and tripling of a fiber Q-switched laser,” Laser Phys. 21, 277–282 (2011). [CrossRef]
  18. R. Horiuchi, K. Saiki, K. Adachi, K. Tei, and S. Yamaguchi, “High-peak-power second-harmonic generation of single-stage Yb-doped fiber amplifiers,” Opt. Rev. 15, 136–139 (2008). [CrossRef]
  19. S. C. Pinault and M. J. Potasek, “Frequency broadening by self-phase modulation in optical fibers,” J. Opt. Soc. Am. B 2, 1318–1319 (1985). [CrossRef]
  20. S. F. Feldman, P. R. Staver, and W. T. Lotshaw, “Observation of spectral broadening caused by self-phase modulation in highly multimode optical fiber,” Appl. Opt. 36, 617–621 (1997). [CrossRef]
  21. J. T. Manassah, “Self-phase modulation of incoherent light revisited,” Opt. Lett. 16, 1638–1640 (1991). [CrossRef]
  22. B N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” Opt. Fiber Technol. 5, 185–196 (1999). [CrossRef]
  23. C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30, 1817–1830 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited