OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1245–1256

Generation of a two-dimensional limited-diffraction beam with self-healing ability by annular-type photonic crystals

Hamza Kurt and Mirbek Turduev  »View Author Affiliations

JOSA B, Vol. 29, Issue 6, pp. 1245-1256 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2459 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we present the design of a photonic structure for the generation of in-plane two-dimensional (2D) limited-diffraction beam. We have numerically investigated the characteristics of the light propagation passing through a 2D square-lattice annular-type photonic crystal shaped in an axicon configuration. Careful selection of the operating frequency as well as the optimization of the apex rod position creates a less diffracted beam whose transverse intensity profile closely resembles a zero-order Bessel function. The created beam dramatically resists against the spatial spreading over a propagation distance of 50 μm, after focusing with a spot size of 0.23μm. The self-healing capability of the generated limited-diffraction beam is demonstrated by placing obstacles with different sizes and shapes along the optical axis. The two features that accompany with such beams, i.e., diffraction-limited propagation and reconstruction ability after encountering obstructions, may strengthen its usage in manipulation of light propagation in various environments.

© 2012 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(350.5500) Other areas of optics : Propagation
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: January 24, 2012
Revised Manuscript: February 26, 2012
Manuscript Accepted: February 28, 2012
Published: May 11, 2012

Hamza Kurt and Mirbek Turduev, "Generation of a two-dimensional limited-diffraction beam with self-healing ability by annular-type photonic crystals," J. Opt. Soc. Am. B 29, 1245-1256 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. E. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef]
  2. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954). [CrossRef]
  3. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005). [CrossRef]
  4. A. Onae, T. Kurosawa, Y. Miki, and E. Sakuma, “Nearly diffraction-free CO2 laser beam,” J. Appl. Phys. 72, 4529–4532 (1992). [CrossRef]
  5. L. Niggel, T. Lanz, and M. Maier, “Properties of Bessel beams generated by periodic grating of circular symmetry,” J. Opt. Soc. Am. A 14, 27–33 (1997). [CrossRef]
  6. R. M. Herman and T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8, 932–942 (1991). [CrossRef]
  7. J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63, 063602 (2001). [CrossRef]
  8. R. Grunwald, U. Grieber, F. Tschirschwitz, E. T. J. Nibbering, T. Elsaesser, V. Kebbel, H.-J. Hartmann, and W. Jueptner, “Generation of femtosecond Bessel beams with microaxicon arrays,” Opt. Lett. 25, 981–983 (2000). [CrossRef]
  9. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989). [CrossRef]
  10. T. Grosjean, F. Baida, and D. Courjon, “Conical optics: the solution to confine light,” Appl. Opt. 46, 1994–2000 (2007). [CrossRef]
  11. K. Uehara and H. Kikuchi, “Generation of nearly diffraction-free laser beams,” Appl. Phys. B 48, 125–129 (1989). [CrossRef]
  12. G. Rui, Y. Lu, P. wang, H. Ming, and Q. Zhan, “Generation of enhanced evanescent Bessel beam using band-edge resonance,” J. Appl. Phys. 108, 074304 (2010). [CrossRef]
  13. H. Kurt, “Limited-diffraction light propagation with axicon-shape photonic crystals,” J. Opt. Soc. Am. B 26, 981–986 (2009). [CrossRef]
  14. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (Dover, 1964).
  15. V. Garces-Chavez, D. McGolin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self reconstructing light beam,” Nature 419, 145–147 (2002). [CrossRef]
  16. J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-Healing properties of optical Airy beams,” Opt. Express 16, 12880–12890 (2008). [CrossRef]
  17. Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of distorted nondiffracting beam,” Opt. Commun. 151, 207–211 (1998). [CrossRef]
  18. C. A. McQueen, J. Arlt, and K. Dholakia, “An experiment to study a ‘nondiffracting’ light beam,” Am. J. Phys. 67, 912–915 (1999). [CrossRef]
  19. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243–245 (2002). [CrossRef]
  20. P. Polesana, D. Faccio, P. Di Trapani, A. Dubietis, A. Piskarkas, A. Couairon, and M. A. Porras, “High localization, focal depth and contrast by means of nonlinear Bessel beams,” Opt. Express 13, 6160–6167 (2005). [CrossRef]
  21. Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristic of laser micro drilling using a Bessel beam,” Appl. Phys. A 84, 423–430 (2006). [CrossRef]
  22. W. M. Saj, “Light focusing on a stack of metal-insulator-metal waveguides sharp edge,” Opt. Express 17, 13615–13623 (2009). [CrossRef]
  23. B. P. S. Ahluwalia, X.-C. Yuan, S. H. Tao, W. C. Cheong, L. S. Zhang, and H. Wang, “Micromanipulation of high and low indices microparticles using a microfabricated double axicon,” J. Appl. Phys. 99, 113104 (2006). [CrossRef]
  24. S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic-crystal waveguides,” Appl. Phys. Lett. 86, 081110 (2005). [CrossRef]
  25. D. Tang, L. Chen, and W. Ding, “Efficient beaming from photonic crystal waveguides via self-collimation effect,” Appl. Phys. Lett. 89, 131120 (2006). [CrossRef]
  26. I. Bulu, H. Caglayan, and E. Ozbay, “Beaming of light and enhanced transmission via surface modes of photonic crystals,” Opt. Lett. 30, 3078–3080 (2005). [CrossRef]
  27. H. Kurt, “The directional emission sensitivity of photonic crystal waveguides to air hole removal,” Appl. Phys. B 95, 341–344 (2009). [CrossRef]
  28. M. S. Kumar, S. Menabde, S. Yu, and N. Park, “Directional emission from photonic crystal waveguide terminations using particle swarm optimization,” J. Opt. Soc. Am. B 27, 343–349 (2010). [CrossRef]
  29. H. Kurt, “Theoretical study of directional emission enhancement from photonic crystal waveguides with tapered exits,” IEEE Photon. Technol. Lett. 20, 1682–1684 (2008). [CrossRef]
  30. M. Xin, L. Zhang, C. E. Png, J. H. Teng, and A. J. Danner, “Asymmetric open cavities for beam steering and switching from line-defect photonic crystals,” J. Opt. Soc. Am. B 27, 1153–1157 (2010). [CrossRef]
  31. Z.-H. Chen, Z.-Y. Yu, Y.-M. Liu, P.-F. Lu, and Y. Fu, “Multiple beam splitting to free space from a V groove in a photonic crystal waveguide,” Appl. Phys. B 102, 857–861 (2011). [CrossRef]
  32. A. Vasara, J. Turunen, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3962(1988). [CrossRef]
  33. T. Grosjean, F. Baida, and D. Courjon, “Conical optics: the solution to confine light,” Appl. Opt. 46, 1994–2000 (2007). [CrossRef]
  34. O. Brzobohaty, T. Cizmar, and P. Zemanek, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express 16, 12688–12700 (2008). [CrossRef]
  35. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000). [CrossRef]
  36. H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13, 10316–10326 (2005). [CrossRef]
  37. A. Sharkawy, D. Pustai, S. Shi, D. W. Prather, S. McBridge, and P. Zazucchi, “Modulating dispersion properties of low index photonic crystal structures using microfluidics,” Opt. Express 13, 2814–2821 (2005). [CrossRef]
  38. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef]
  39. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  40. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited