OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1257–1262

High stability soliton frequency-shifting mechanisms for laser synchronization applications

Jan Rothhardt, Alexander M. Heidt, Steffen Hädrich, Stefan Demmler, Jens Limpert, and Andreas Tünnermann  »View Author Affiliations

JOSA B, Vol. 29, Issue 6, pp. 1257-1262 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1026 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze frequency-shifting mechanisms in photonic crystal fibers (PCFs). In contrast to the generally used approach of launching pulses in the negative group velocity dispersion (GVD) region of PCFs, we suggest employing a fiber with a higher zero dispersion wavelength that is pumped in the positive GVD region. Results of a numerical optimization reveal that the amplitude stability of the frequency-shifted pulses can be improved by more than 1 order of magnitude and the timing jitter arising from input fluctuations by 2 orders of magnitude by a proper choice of the fiber dispersion. The presented approach and optimization will improve the performance of timing- and amplitude-sensitive applications, such as nonlinear microscopy and spectroscopy or optical synchronization for optical parametric chirped pulse amplification significantly.

© 2012 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 6, 2011
Revised Manuscript: February 27, 2012
Manuscript Accepted: March 6, 2012
Published: May 11, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Jan Rothhardt, Alexander M. Heidt, Steffen Hädrich, Stefan Demmler, Jens Limpert, and Andreas Tünnermann, "High stability soliton frequency-shifting mechanisms for laser synchronization applications," J. Opt. Soc. Am. B 29, 1257-1262 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008). [CrossRef]
  2. K. Sumimura, Y. Genda, T. Ohta, K. Itoh, and N. Nishizawa, “Quasi-supercontinuum generation using 1.06 µm ultrashort-pulse laser system for ultrahigh-resolution optical-coherence tomography,” Opt. Lett. 35, 3631–3633 (2010). [CrossRef]
  3. E. R. Andresen, V. Birkedal, J. Thøgersen, and S. R. Keiding, “Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift,” Opt. Lett. 31, 1328–1330 (2006). [CrossRef]
  4. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986). [CrossRef]
  5. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  6. J. K. Lucek and K. J. Blow, “Soliton self-frequency shift in telecommunications fiber,” Phys. Rev. A 45, 6666–6674 (1992). [CrossRef]
  7. S. A. Dekker, A. C. Judge, R. Pant, I. Gris-Sánchez, J. C. Knight, C. M. de Sterke, and B. J. Eggleton, “Highly-efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss,” Opt. Express 19, 17766–17773 (2011). [CrossRef]
  8. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003). [CrossRef]
  9. C. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuška, A. Zheltikov, and F. Krausz, “Soliton-based pump–seed synchronization for few-cycle OPCPA,” Opt. Express 13, 6550–6557 (2005). [CrossRef]
  10. S. Hädrich, S. Demmler, J. Rothhardt, C. Jocher, J. Limpert, and A. Tünnermann, “High-repetition-rate sub-5-fs pulses with 12 GW peak power from fiber-amplifier-pumped optical parametric chirped-pulse amplification,” Opt. Lett. 36, 313–315 (2011). [CrossRef]
  11. J. Rothhardt, S. Hädrich, E. Seise, M. Krebs, F. Tavella, A. Willner, S. Düsterer, H. Schlarb, J. Feldhaus, J. Limpert, J. Rossbach, and A. Tünnermann, “High average and peak power few-cycle laser pulses delivered by fiber pumped OPCPA system,” Opt. Express 18, 12719–12726 (2010). [CrossRef]
  12. D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34, 2459–2461 (2009). [CrossRef]
  13. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  14. www.fiberdesk.com .
  15. A. M. Heidt, “Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers,” J. Lightwave Technol. 27, 3984–3991 (2009). [CrossRef]
  16. B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005). [CrossRef]
  17. D. Wood, “Constraints on the bit rates in direct detection optical communication systems using linear or soliton pulses,” J. Lightwave Technol. 8, 1097–1106 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited