OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1263–1269

Localized surface plasmon modes in a system of two interacting metallic cylinders

Viktoriia E. Babicheva, Sergey S. Vergeles, Petr E. Vorobev, and Sven Burger  »View Author Affiliations

JOSA B, Vol. 29, Issue 6, pp. 1263-1269 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (345 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study an optical response of a system of two parallel close metallic cylinders having nanoscale dimensions. Surface plasmon excitation in the gap between the cylinders is specifically analyzed. In particular, resonance frequencies and field enhancement were investigated as functions of geometrical characteristics of the system and ohmic losses in the metal. The results of numerical simulations were systematically compared with the analytical theory, obtained in the quasi-static limit. The analytical method was generalized in order to take into account the retardation effects. We also present the physical qualitative picture of the plasmon modes, which is validated by numerical simulations and analytical theory.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(160.3918) Materials : Metamaterials

ToC Category:
Optics at Surfaces

Original Manuscript: January 27, 2012
Revised Manuscript: March 16, 2012
Manuscript Accepted: March 19, 2012
Published: May 17, 2012

Viktoriia E. Babicheva, Sergey S. Vergeles, Petr E. Vorobev, and Sven Burger, "Localized surface plasmon modes in a system of two interacting metallic cylinders," J. Opt. Soc. Am. B 29, 1263-1269 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Suzuki, A. Takada, T. Yamada, T. Hayasaka, K. Sasaki, E. Takahashi, and S. Kumagai, “Low-reflective wire-grid polarizers with absorptive interference overlayers,” Nanotechnology 21, 175604 (2010). [CrossRef]
  2. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14, 2323–2334 (2006). [CrossRef]
  3. R. M. Bakker, H-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92, 043101 (2008). [CrossRef]
  4. J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, “Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles,” Nano Lett. 7, 2101–2107 (2007). [CrossRef]
  5. D. Bloemendal, P. Ghenuche, R. Quidant, I. G. Cormack, P. Loza-Alvarez, and G. Badenes, “Local field spectroscopy of metal dimers by TPL microscopy,” Plasmonics 1, 41–44(2006). [CrossRef]
  6. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007). [CrossRef]
  7. J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J-C. Weeber, A. Dereux, S. Kostcheev, H. I. E. Ahrach, A-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921(2009). [CrossRef]
  8. Z.-K. Zhou, M. Li, Z.-J. Yang, X.-N. Peng, X.-R. Su, Z.-S. Zhang, J.-B. Li, N.-C. Kim, X.-F. Yu, L. Zhou, Z.-H. Hao, and Q.-Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4, 5003–5010 (2010). [CrossRef]
  9. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003). [CrossRef]
  10. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection and fan-out in silver nanowires,” Nano Lett. 6, 1822–1826 (2006). [CrossRef]
  11. J. Clarkson, J. Winans, and P. Facuhet, “On the scaling behavior of dipole and quadrupole modes in coupled plasmonic nanoparticle pairs,” Opt. Mater. Express 1, 970–979 (2011). [CrossRef]
  12. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garcia De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006). [CrossRef]
  13. V. Amendola, O. M. Bakr, and F. Stellacci, “A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure and assembly,” Plasmonics 585–97 (2010). [CrossRef]
  14. Y. Cheng, M. Wang, G. Borghs, and H. Chen, “Gold nanoparticle dimers for plasmon sensing,” Langmuir 27, 7884–7891 (2011). [CrossRef]
  15. G. Haran, “Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields,” Acc. Chem. Res. 43, 1135–1143 (2010). [CrossRef]
  16. P. M. Morse and H. Feshbach, Methods of Theoretical Physics. Part II (McGraw-Hill, 1953).
  17. A. D. Boardman and B. V. Paranjape, “The optical surface modes of metal spheres,” J. Phys. F 7, 1935–1945 (1977). [CrossRef]
  18. D. Y. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt. 12, 015002 (2010). [CrossRef]
  19. I. P. Kaminow, W. L. Mammel, and H. P. Weber, “Metal-clad optical waveguides: analytical and experimental study,” Appl. Opt. 13, 396–405 (1974). [CrossRef]
  20. C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974). [CrossRef]
  21. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Letters 4, 899–903 (2004). [CrossRef]
  22. S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett. 36, 2278–2280 (2011).
  23. M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behavior,” ACS Nano 5, 2042–2050 (2011). [CrossRef]
  24. J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Multipole approach to metamaterials,” Phys. Rev. A 78, 043811 (2008). [CrossRef]
  25. D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nano-antennas to chiral metamaterials,” Appl. Phys. B: Lasers Opt. 105, 81–97 (2011). [CrossRef]
  26. V. Lebedev, S. Vergeles, and P. Vorobev, “Giant enhancement of electric field between two close metallic grains due to plasmonic resonance,” Opt. Lett. 35, 640–642 (2010). [CrossRef]
  27. V. V. Klimov and D. V. Guzatov, “Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom,” Phys. Rev. B 75, 24303 (2007). [CrossRef]
  28. M. H. Davis, “Two charged spherical conductors in a uniform electric field: forces and field strength,” Q. J. Mech. Appl. Math. 17, 499–511 (1964). [CrossRef]
  29. P. E. Vorobev, “Electric field enhancement between two parallel cylinders due to plasmonic resonance,” J. Exp. Theor. Phys. 110, 193–198 (2010). [CrossRef]
  30. A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B 104, 11965(2000). [CrossRef]
  31. J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi B 244, 3419–3434 (2007). [CrossRef]
  32. J. Hoffmann, C. Hafner, P. Leidenberger, J. Hesselbarth, and S. Burger, “Comparison of electromagnetic field solvers for the 3D analysis of plasmonic nanoantennas,” Proc. SPIE 7390, 73900J (2009). [CrossRef]
  33. S. Burger, R. Köhle, L. Zschiedrich, W. Gao, F. Schmidt, R. März, and C. Nölscher, “Benchmark of FEM, waveguide and FDTD algorithms for rigorous mask simulation,” Proc. SPIE 5992, 599216 (2005). [CrossRef]
  34. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited