OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1291–1295

Optical bistability based on guided-mode resonances in photonic crystal slabs

Quang Minh Ngo, Khai Q. Le, and Vu Dinh Lam  »View Author Affiliations

JOSA B, Vol. 29, Issue 6, pp. 1291-1295 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (639 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical bistability of nonlinear guided-mode resonances in photonic crystal slabs (PCSs) are numerically investigated. We perform finite-difference time-domain simulations to determine the linear and nonlinear characteristics of these guided-mode resonances in PCSs. The nonlinear characteristics such as switching intensity and switching time, which are suggested as the performance metric of all-optical switches, are similar to the all-optical switches in slab waveguide gratings. While the slab waveguide gratings are sensitive to the incoming light polarization, the PCSs can offer an advantage of avoiding reduction efficiency and a requirement of careful polarization stabilization of the light source. From the calculations, we introduce a dependency of the normalized switching intensity and the switching time of the all-optical switches on quality factor for our designed guided-mode resonances in PCSs.

© 2012 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(190.1450) Nonlinear optics : Bistability
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Nonlinear Optics

Original Manuscript: February 8, 2012
Revised Manuscript: April 5, 2012
Manuscript Accepted: April 6, 2012
Published: May 17, 2012

Quang Minh Ngo, Khai Q. Le, and Vu Dinh Lam, "Optical bistability based on guided-mode resonances in photonic crystal slabs," J. Opt. Soc. Am. B 29, 1291-1295 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
  2. S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B 19, 2241–2149 (2002). [CrossRef]
  3. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002). [CrossRef]
  4. M. Soljacić, C. Luo, J. D. Joannopoulos, and S. Fan, “Nonlinear photonic crystal microdevices for optical integration,” Opt. Lett. 28, 637–639 (2003). [CrossRef]
  5. S. Radic, N. George, and G. P. Agrawal, “Optical switching in λ/4-shifted nonlinear periodic structures,” Opt. Lett. 19, 1789–1791 (1994). [CrossRef]
  6. S. Jans, J. He, Z. R. Wasilewski, and M. Cada, “Low threshold optical bistable switching in an asymmetric λ/4-shifted distributed-feedback heterostructures,” Appl. Phys. Lett. 67, 1051 (1995). [CrossRef]
  7. P. Vincent, N. Paraire, M. Neviere, A. Koster, and R. Reinisch, “Grating in nonlinear optics and optical bistability,” J. Opt. Soc. Am. B 2, 1106–1116 (1985). [CrossRef]
  8. I. A. Avrutskii and V. A. Sychugov, “Optical bistability in an excited nonlinear corrugated waveguide,” Sov. J. Quantum Electron. 20, 856–859 (1990). [CrossRef]
  9. Q. M. Ngo, S. Kim, S. H. Song, and R. Magnusson, “Optical bistable devices based on guided-mode resonance in slab waveguide gratings,” Opt. Express 17, 23459–23467 (2009). [CrossRef]
  10. M. E. Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18, 22702–22714 (2010). [CrossRef]
  11. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002). [CrossRef]
  12. M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, “Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals,” J. Lightwave Technol. 17, 2096–2112 (1999). [CrossRef]
  13. A. A. Erchak, D. J. Ripin, S. Fan, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodzjeski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001). [CrossRef]
  14. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, and J. D. Joannopoulos, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999). [CrossRef]
  15. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316–318 (1999). [CrossRef]
  16. A. Mekis, A. Dodabalapur, R. E. Slusher, and J. D. Joannopoulos, “Two-dimensional photonic crystal couplers for unidirectional light output,” Opt. Lett. 25, 942–944 (2000). [CrossRef]
  17. S. Peng and G. M. Morris, “Resonant scattering from two-dimensional gratings,” J. Opt. Soc. Am. A 13, 993–1005 (1996). [CrossRef]
  18. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in a air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997). [CrossRef]
  19. A. Taflove, Computational Electrodynamics (Artech House, 1995).
  20. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31, 2972–2974 (2006). [CrossRef]
  21. H. A. Haus, Waves and Field in Optoelectronics (Prentice-Hall, 1984).
  22. J. M. Laniel, N. Ho, and R. Vallee, “Nonlinear-refractive-index measurement in As2S3 channel waveguides by asymmetric self-phase modulation,” J. Opt. Soc. Am. B 22, 437–445 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited