OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1305–1315

Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for Doppler-broadened detection in the 1012cm1Hz1/2 region

Patrick Ehlers, Isak Silander, Junyang Wang, and Ove Axner  »View Author Affiliations


JOSA B, Vol. 29, Issue 6, pp. 1305-1315 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001305


View Full Text Article

Enhanced HTML    Acrobat PDF (1215 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry (FL-NICE-OHMS) system for white-noise-limited Doppler-broadened detection down to 5.6×1012cm1Hz1/2 is demonstrated. The system is based on a previous FL-NICE-OHMS instrumentation in which the locking of the laser frequency to a cavity mode has been improved by the use of an acousto-optic modulator (AOM) and provision of a more stable environment by the employment of a noise-isolating enclosed double-layer table, a temperature regulation of the laboratory, and an ultra-high-vacuum (UHV) gas system. White-noise behavior up to 10 s provides the instrument with a minimum detectable on-resonance absorbance per unit length of 1.8×1012cm1 and a relative single-pass absorption (ΔI/I) of 7.2×1011. The system was applied to detection of acetylene on a transition at 1531.588 nm, yielding a detection sensitivity of C2H2 in atmospheric pressure gas of 4 ppt (measured over 10 s).

© 2012 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4780) Lasers and laser optics : Optical resonators
(230.1040) Optical devices : Acousto-optical devices
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 14, 2011
Manuscript Accepted: February 15, 2012
Published: May 17, 2012

Citation
Patrick Ehlers, Isak Silander, Junyang Wang, and Ove Axner, "Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for Doppler-broadened detection in the 10−12  cm−1 Hz−1/2 region," J. Opt. Soc. Am. B 29, 1305-1315 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-6-1305


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Ye, L. Ma, and J. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998). [CrossRef]
  2. L. Ma, J. Ye, P. Dube, and J. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255–2268 (1999). [CrossRef]
  3. A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92, 313–326 (2008). [CrossRef]
  4. C. Ishibashi and H. Sasada, “Highly sensitive cavity-enhanced sub-doppler spectroscopy of a molecular overtone band with a 1.66 μm tunable diode laser,” Jpn. J. Appl. Phys. 38, 920–922 (1999). [CrossRef]
  5. C. Ishibashi and H. Sasada, “Near-infrared laser spectrometer with sub-Doppler resolution, high sensitivity, and wide tunability: a case study in the 1.65 μm region of CH3I spectrum,” J. Mol. Spectrosc. 200, 147–149 (2000). [CrossRef]
  6. L. Gianfrani, R. Fox, and L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B 16, 2247–2254 (1999). [CrossRef]
  7. M. Taubmann, T. Myers, B. Cannon, and R. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A 60, 3457–3468 (2004).
  8. N. van Leeuwen and A. Wilson, “Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” J. Opt. Soc. Am. B 21, 1713–1721 (2004). [CrossRef]
  9. N. van Leeuwen, H. Kjaergaard, D. Howard, and A. Wilson, “Measurement of ultraweak transitions in the visible region of molecular oxygen,” J. Mol. Spectrosc. 228, 83–91 (2004). [CrossRef]
  10. J. Bood, A. McIlroy, and D. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311 (2006). [CrossRef]
  11. F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range,” J. Opt. Soc. Am. B 24, 1392–1405 (2007). [CrossRef]
  12. F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, “Doppler-broadened fiber-laser-based NICE-OHMS—Improved detectability,” Opt. Express 15, 10822–10831 (2007). [CrossRef]
  13. A. Foltynowicz, W. Ma, and O. Axner, “Characterization of fiber-laser-based sub-Doppler NICE-OHMS for quantitative trace gas detection,” Opt. Express 16, 14689–14702 (2008). [CrossRef]
  14. W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008). [CrossRef]
  15. A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectrometry signals from optically saturated transitions under low pressure conditions,” J. Opt. Soc. Am. B 25, 1156–1165 (2008). [CrossRef]
  16. O. Axner, W. Ma, and A. Foltynowicz, “Sub-Doppler dispersion and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy revised,” J. Opt. Soc. Am. B 25, 1166–1177 (2008). [CrossRef]
  17. A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Wavelength-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signal line shapes in the Doppler limit,” J. Opt. Soc. Am. B 26, 1384–1394 (2009). [CrossRef]
  18. A. Foltynowicz, J. Wang, P. Ehlers, and O. Axner, “Distributed-feedback-laser-based NICE-OHMS in the pressure-broadened regime,” Opt. Express 18, 18580–18591 (2010). [CrossRef]
  19. J. Wang, P. Ehlers, I. Silander, and O. Axner, “Dicke narrowing in the dispersion mode of detection and in noise-immune cavity-enhanced optical heterodyne molecular spectroscopytheory and experimental verification,” J. Opt. Soc. Am. B 28, 2390–2401 (2011). [CrossRef]
  20. C. L. Bell, G. Hancock, R. Peverall, G. A. D. Ritchie, J. H. van Helden, and N. J. van Leeuwen, “Characterization of an external cavity diode laser based ring cavity NICE-OHMS system,” Opt. Express 17, 9834–9839 (2009). [CrossRef]
  21. I. Silander, P. Ehlers, J. Wang, and O. Axner, “Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk,” J. Opt. Soc. Am. B.29, 916–923 (2012).
  22. A. Foltynowicz, I. Silander, and O. Axner, “Reduction of background signals in fiber-based NICE-OHMS,” J. Opt. Soc. Am. B 28, 2797–2805 (2011). [CrossRef]
  23. E. A. Whittaker, M. Gehrtz, and G. Bjorklund, “Residual amplitude-modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320–1326 (1985). [CrossRef]
  24. G. Camy, D. Pinaud, N. Courtier, and H. Chuan, “Recent developments in high-resolution saturation spectroscopy obtained by means of acoustooptic modulators,” Rev. Phys. Appl. 17, 357–363 (1982). [CrossRef]
  25. J. Hall and T. Haensch, “External dye-laser frequency stabilizer,” Opt. Lett. 9, 502–504 (1984). [CrossRef]
  26. J. Ye and J. Hall, “Optical phase locking in the microradian domain: potential applications to NASA spaceborne optical measurements,” Opt. Express 24, 1838–1840 (1999).
  27. J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Haensch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry–Perot cavities,” Phys. Rev. A 77, 053809 (2008). [CrossRef]
  28. D. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966). [CrossRef]
  29. P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption-spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993). [CrossRef]
  30. E. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001). [CrossRef]
  31. R. Fox, C. Oates, and L. Hollberg, “Stabilizing diode lasers to high-finesse cavities,” in Cavity-Enhanced Spectroscopies, R. D. van Zee and J. P. Looney, eds. (Elsevier Science, 2002).
  32. R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical-resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  33. R. DeVoe and R. Brewer, “Laser frequency division and stabilization,” Phys. Rev. A 30, 2827–2829 (1984). [CrossRef]
  34. I. Silander, P. Ehlers, J. Wang, and O. Axner, Department of Physics, Umeå University, SE-901 87 Umeå, Sweden, are preparing a manuscript to be called “Influence of environmental conditions to a fiber-laser based NICE-OHMS system” (available from ove.axner@physics.umu.se).
  35. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009). [CrossRef]
  36. J. Weideman, “Computation of the complex error function,” SIAM J. Numer. Anal. 31, 1497–1518 (1994). [CrossRef]
  37. P. Kluczynski, A. Lindberg, and O. Axner, “Characterization of background signals in wavelength-modulation spectrometry in terms of a Fourier based theoretical formalism,” Appl. Opt. 40, 770–782 (2001). [CrossRef]
  38. P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B 102, 313–329 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited