OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1330–1337

Anomalous self-steepening, temporal pulse splitting and ring formation in a left-handed metamaterial with cubic nonlinearity

Ajit Kumar and Akhilesh Kumar Mishra  »View Author Affiliations


JOSA B, Vol. 29, Issue 6, pp. 1330-1337 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001330


View Full Text Article

Enhanced HTML    Acrobat PDF (703 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, starting with the Maxwell equations and the corresponding nonlinear wave equation, we derive a pulse evolution equation for a metamaterial with cubic (Kerr) nonlinearity. The given model equation goes beyond the commonly employed slowly evolving wave approximation (SEWA). The dispersive properties of the dielectric susceptibility and magnetic permeability are accounted for in accordance with the Drude model. Using this model equation, propagation properties of a single-cycle pulse and a 4-cycle pulse are studied numerically in a left-handed metamaterial (LHMM) with third-order nonlinearity.

© 2012 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.3270) Nonlinear optics : Kerr effect
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(160.3918) Materials : Metamaterials

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 19, 2011
Revised Manuscript: November 21, 2011
Manuscript Accepted: November 22, 2011
Published: May 21, 2012

Citation
Ajit Kumar and Akhilesh Kumar Mishra, "Anomalous self-steepening, temporal pulse splitting and ring formation in a left-handed metamaterial with cubic nonlinearity," J. Opt. Soc. Am. B 29, 1330-1337 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-6-1330


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µSov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  2. J. B. Pendry, D. Shurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]
  4. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef]
  5. V. G. Veselago, “Negative refractive index materials,” J. Comp. Theo. Nanoscience 3, 1–30 (2006).
  6. D. Z. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopoulos, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999). [CrossRef]
  7. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999). [CrossRef]
  8. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004). [CrossRef]
  9. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004). [CrossRef]
  10. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005). [CrossRef]
  11. M. Bayindir, K. Aydin, E. Ozbay, P. Marko, and C. M. Soukoulis, “Transmission properties of composite metamaterials in free space,” Appl. Phys. Lett. 81, 120–122 (2002). [CrossRef]
  12. W. T. Lu, J. B. Sokoloff, and S. Sridhar, “Refraction of electromagnetic energy for wavepackets incident on a negative-index medium is always negative,” Phys. Rev. E 69, 0266041 (2004).
  13. G. DAguanno, N. Mattiucci, and M. J. Bloemer, “Ultraslow light pulses in a nonlinear metamaterial,” J. Opt. Soc. Am. B 25, 1236–1241 (2008). [CrossRef]
  14. V. V. Grigoriev and V. V. Kabanov, “Propagation of a localized wavepacket in a metamaterial with a negative index of refraction,” J. Appl. Spectrosc. 75, 192–198 (2008). [CrossRef]
  15. G. D’Aguanno, N. Aközbec, N. Mattiucci, M. Scalora, M. J. Bloemer, and A. M. Zheltikov, “Dispersion-free pulse propagation in a negative-index material,” Opt. Lett. 30, 1998–2000 (2005). [CrossRef]
  16. V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, “Linear and nonlinear wave propagation in negative refraction metamaterials,” Phys. Rev. B 69, 1651121 (2004). [CrossRef]
  17. N. Lazarides and G. P. Tsironis, “Coupled nonlinear Schrödinger field equations for electromagnetic wave propagation in nonlinear left-handed materials,” Phys. Rev. E 71, 0366141 (2005).
  18. I. Kourakis and P. K. Shukla, “Nonlinear propagation of electromagnetic waves in negative-refraction-index composite materials,” Phys. Rev. E 72, 0166261 (2005). [CrossRef]
  19. S. Wen, Y. Xiang, X. Dai, Z. Tang, W. Su, and D. Fan, “Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials,” Phys. Rev. A 75, 0338151(2007).
  20. M. Scalora, M. S. Syrchin, N. Aközbec, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 0139021(2005).
  21. V. Skarka, V. I. Berezhiani, and R. Miklaszewski, “Spatiotemporal dynamics of electromagnetic pulses in saturating nonlinear optical media with normal group velocity dispersion,” Phys. Rev. E 60, 7622–7625 (1999). [CrossRef]
  22. S. Wen, Y. Wang, W. Su, Y. Xiang, X. Fu, and D. Fan, “Modulation instability in nonlinear negative-index material,” Phys. Rev. E 73, 0366171 (2006). [CrossRef]
  23. R. G. Flesch, A. Pushkarev, and J. V. Moloney, “Carrier wave shocking of femtosecond optical pulses,” Phys. Rev. Lett. 76, 2488–2491 (1996). [CrossRef]
  24. J. Zhang, S. Wen, Y. Xiang, Y. Wang, and H. Luo, “Spatiotemporal electromagnetic soliton and spatial ring formation in nonlinear metamaterials,” Phys. Rev. A 81, 0238291(2010).
  25. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997). [CrossRef]
  26. J. K. Ranka and A. Gaeta, “Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses,” Opt. Lett. 23, 534–536 (1998). [CrossRef]
  27. T. Tsurumi, “Propagation of few- to sub-cycle pulse in dispersive media,” J. Phys. Soc. Jpn. 75, 024002 (2006). [CrossRef]
  28. A. Kumar, “A few- and sub-cycle pulse evolution equation in a cubic nonlinear medium,” Theor. Math. Phys. 160, 968–975 (2009). [CrossRef]
  29. A. Kumar, “Ultrashort pulse propagation in a cubic medium including the Raman effect,” Phys. Rev. A 81, 0138071(2010).
  30. I. V. Melnikov, D. Mihalache, F. Moldoveanu, and N.-C. Panoiu, “Quasiadiabatic following of femtosecond optical pulses in a weakly excited semiconductor,” Phys. Rev. A 56, 1569–1576 (1997). [CrossRef]
  31. H. Leblond and D. Mihalache, “Few-optical-cycle dissipative solitons,” J. Phys. A 43, 375205 (2010). [CrossRef]
  32. H. Leblond, D. Kremer, and D. Mihalache, “Collapse of ultrashort spatiotemporal pulses described by the cubic generalized Kadomtsev-Petviashvili equation,” Phys. Rev. A 81, 0338241 (2010).
  33. H. Leblond and F. Sanchez, “Models for optical solitons in the two-cycle regime,” Phys. Rev. A 67, 0138041 (2003). [CrossRef]
  34. J. B. Pendry, “Negative refraction,” Contemp. Phys. 45, 191–202 (2004). [CrossRef]
  35. T. Taniuti and C.-C. Wei, “Reductive perturbation method in nonlinear wave propagation,” J. Phys. Soc. Jpn. 24, 941–946 (1968). [CrossRef]
  36. E. M. Wright, B. L. Lawrence, W. Torruellas, and G. Stegeman, “Stable self-trapping and ring formation in polydiacetelene para-toluene sulfonate,” Opt. Lett. 20, 2481–2483 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited