OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1347–1355

Mid-infrared sources based on the soliton self-frequency shift

Alaa M. Al-kadry and Martin Rochette  »View Author Affiliations

JOSA B, Vol. 29, Issue 6, pp. 1347-1355 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (849 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method to maximize the soliton self-frequency shift (SSFS) in microwires with diameter profiles varying nonuniformly along the soliton propagation path. The method is divided into two steps. The first step consists in selecting the input microwire diameter that leads to the highest rate of frequency shift per unit of propagation length. The second step consists in increasing gradually the microwire diameter along the soliton path to suppress dispersive wave emission and maintain a large rate of frequency shift per unit of propagation length. We first propose and apply a rule to select the initial diameter using the adiabatic theory. The optimal diameter profile is then achieved by maintaining the redshifting soliton at a fixed spectral separation from the zero-dispersion wavelengths. The optimized profile supports solitons with different input energies that allow a wavelength shift up to 650 nm from the 2100 nm pump wavelength in a 20 cm microwire length. We compare our results with the SSFS generated in microwires with uniform diameter profile to illustrate the enhancement of wavelength shift in the designed nonuniform microwire.

© 2012 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers

ToC Category:
Nonlinear Optics

Original Manuscript: December 13, 2011
Revised Manuscript: March 21, 2012
Manuscript Accepted: March 21, 2012
Published: May 22, 2012

Alaa M. Al-kadry and Martin Rochette, "Mid-infrared sources based on the soliton self-frequency shift," J. Opt. Soc. Am. B 29, 1347-1355 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Kivisto, T. Hakulinen, M. Guina, and O. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm–Ho fiber laser,” IEEE Photon. Technol. Lett. 19, 934–936 (2007). [CrossRef]
  2. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986). [CrossRef]
  3. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986). [CrossRef]
  4. P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987). [CrossRef]
  5. D. A. Chestnut and J. R. Taylor, “Soliton self-frequency shift in highly nonlinear fiber with extension by external Raman pumping,” Opt. Lett. 28, 2512–2514 (2003). [CrossRef]
  6. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air–silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001). [CrossRef]
  7. B. Washburn, S. Ralph, P. Lacourt, J. Dudley, W. Rhodes, R. Windeler, and S. Coen, “Tunable near-infrared femtosecond soliton generation in photonic crystal fibres,” Electron. Lett. 37, 1510–1512 (2001). [CrossRef]
  8. I. Cormack, D. Reid, W. Wadsworth, J. Knight, and P. Russell, “Observation of soliton self-frequency shift in photonic crystal fibre,” Electron. Lett. 38, 167–169 (2002). [CrossRef]
  9. D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003). [CrossRef]
  10. S. M. Kobtsev, S. V. Kukarin, N. V. Fateevand, and S. V. Smirnov, “Generation of self-frequency-shifted solitons in tapered fibers in the presence of femtosecond pumping,” Laser Phys. 14, 748–751 (2004).
  11. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [CrossRef]
  12. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973). [CrossRef]
  13. J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, W. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809(2000). [CrossRef]
  14. N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999). [CrossRef]
  15. M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2- to 2.2-μm tunable Raman soliton source based on a Cr:forsterite laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008). [CrossRef]
  16. H. Lim, J. Buckley, A. Chong, and F. Wise, “Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 μm,” Electron. Lett. 40, 1523–1525 (2004). [CrossRef]
  17. I. Gris-Sánchez, B. Mangan, and J. Knight, “Reducing spectral attenuation in small-core photonic crystal fibers,” Opt. Mater. Express 1, 179–184 (2011). [CrossRef]
  18. C. Baker and M. Rochette, “A generalized heat-brush approach for precise control of the waist profile in fiber tapers,” Opt. Mater. Express 1, 1065–1076 (2011). [CrossRef]
  19. J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci. 1, 296–308 (2010). [CrossRef]
  20. D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660–662 (2008). [CrossRef]
  21. C. Baker and M. Rochette, “Highly nonlinear hybrid AsSe–PMMA microtapers,” Opt. Express 18, 12391–12398 (2010). [CrossRef]
  22. Z. Chen, A. J. Taylor, and A. Efimov, “Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper,” Opt. Express 17, 5852–5860 (2009). [CrossRef]
  23. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607(1995). [CrossRef]
  24. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett. 10, 457–459 (1985). [CrossRef]
  25. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098. [CrossRef]
  26. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, and C. M. de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26, 2064–2071 (2009). [CrossRef]
  27. K. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989). [CrossRef]
  28. J. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications (CRC Press, 2009).
  29. H. Lin, W. Dechent, D. Day, and J. Stoffer, “Preparation and properties of mid-infrared glass fibres and poly (chlorotrifluoroethylene) composites,” J. Mater. Sci. 32, 6573–6578 (1997). [CrossRef]
  30. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004). [CrossRef]
  31. G. Snopatin, V. Shiryaev, V. Plotnichenko, E. Dianov, and M. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009). [CrossRef]
  32. J. Hult, “A fourth-order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25, 3770–3775(2007). [CrossRef]
  33. J. Herrmann and A. Nazarkin, “Soliton self-frequency shift for pulses with a duration less than the period of molecular oscillations,” Opt. Lett. 19, 2065–2067 (1994). [CrossRef]
  34. R. Pant, A. C. Judge, E. C. Magi, B. T. Kuhlmey, M. de Sterke, and B. J. Eggleton, “Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift,” J. Opt. Soc. Am. B 27, 1894–1901 (2010). [CrossRef]
  35. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989). [CrossRef]
  36. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010). [CrossRef]
  37. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited