OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1383–1393

Noble-metal nanoparticles and short pulses for nanomanipulations: theoretical analysis

Gili Bisker and Dvir Yelin  »View Author Affiliations

JOSA B, Vol. 29, Issue 6, pp. 1383-1393 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2389 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The rapid temperature change and the near-field enhancement resulting from resonant interactions between short laser pulses and noble-metal nanoparticles could be utilized for precise manipulations of matter on a nanometric scale. Here, we present a theoretical study of the relative effects of various experimental parameters, including pulse duration, irradiance, and wavelength, and a particle’s substance, size, and shape. We show that spatially confined, local nanometric interactions between a particle and its near surroundings are feasible using 50 nm gold and silver nanospheres illuminated by laser pulses shorter than 70 fs and 90 fs, respectively, with no particle melting and minimal collateral damage. The results of this work could be useful for researchers in various fields, who aim at manipulating matter on the smallest possible scales, with high specificity and accuracy.

© 2012 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(140.7090) Lasers and laser optics : Ultrafast lasers
(190.4180) Nonlinear optics : Multiphoton processes
(260.5210) Physical optics : Photoionization
(290.5850) Scattering : Scattering, particles

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 19, 2011
Revised Manuscript: February 12, 2012
Manuscript Accepted: April 3, 2012
Published: May 23, 2012

Gili Bisker and Dvir Yelin, "Noble-metal nanoparticles and short pulses for nanomanipulations: theoretical analysis," J. Opt. Soc. Am. B 29, 1383-1393 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220, 524–527 (1983). [CrossRef]
  2. G. L. LeCarpentier, M. Motamedi, L. P. McMath, S. Rastegar, and A. J. Welch, “Continuous wave laser ablation of tissue: analysis of thermal and mechanical events,” IEEE Trans. Biomed. Eng. 40, 188–200 (1993). [CrossRef]
  3. M. A. Latina and C. Park, “Selective targeting of trabecular meshwork cells: in vitro studies of pulsed and CW laser interactions,” Exp. Eye Res. 60, 359–371 (1995). [CrossRef]
  4. V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88, 078103 (2002). [CrossRef]
  5. V. Kohli, A. Y. Elezzabi, and J. P. Acker, “Cell nanosurgery using ultrashort (femtosecond) laser pulses: applications to membrane surgery and cell isolation,” Lasers Surg. Med. 37, 227–230 (2005). [CrossRef]
  6. K. König, I. Riemann, P. Fischer, and J. K. Halbhuber, “Intracellular nanosurgery with near infrared femtosecond laser pulses,” Cell. Mol. Biol. 45, 195–201 (1999).
  7. N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mech. Chem. Biosyst. 2, 17–25 (2005).
  8. K. König, I. Riemann, and W. Fritzsche, “Nanodissection of human chromosomes with near-infrared femtosecond laser pulses,” Opt. Lett. 26, 819–821 (2001). [CrossRef]
  9. U. K. Tirlapur and K. Konig, “Cell biology: targeted transfection by femtosecond laser,” Nature 418, 290–291 (2002). [CrossRef]
  10. M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432, 822–822 (2004). [CrossRef]
  11. M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. USA 102, 17565–17569 (2005). [CrossRef]
  12. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006). [CrossRef]
  13. C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513 (1977). [CrossRef]
  14. M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004). [CrossRef]
  15. Yu-Ying Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997). [CrossRef]
  16. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today 2, 18–29 (2007). [CrossRef]
  17. D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, “Multiphoton plasmon-resonance microscopy,” Opt. Express 11, 1385–1391 (2003). [CrossRef]
  18. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102, 15752–15756 (2005). [CrossRef]
  19. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006). [CrossRef]
  20. T. S. Troutman, J. K. Barton, and M. Romanowski, “Optical coherence tomography with plasmon resonant nanorods of gold,” Opt. Lett. 32, 1438–1440 (2007). [CrossRef]
  21. D. Pissuwan, T. Niidome, and M. B. Cortie, “The forthcoming applications of gold nanoparticles in drug and gene delivery systems,” J. Controlled Release 149, 65–71 (2011).
  22. G. F. Paciotti, L. Myer, D. Weinreich, D. Goia, N. Pavel, R. E. McLaughlin, and L. Tamarkin, “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Deliv. 11, 169–183 (2004). [CrossRef]
  23. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005). [CrossRef]
  24. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004). [CrossRef]
  25. O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D 41, 185501 (2008). [CrossRef]
  26. A. N. Volkov, C. Sevilla, and L. V. Zhigilei, “Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water,” Appl. Surf. Sci. 253, 6394–6399 (2007). [CrossRef]
  27. B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24, 649 (1981). [CrossRef]
  28. D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys. A 89, 283–291 (2007). [CrossRef]
  29. W. Osamu, I. Taiji, H. Makoto, T. Masaaki, and K. Yoshimasa, “Nanofabrication induced by near-field exposure from a nanosecond laser pulse,” Appl. Phys. Lett. 79, 1366 (2001).
  30. D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38, 631–642 (2006). [CrossRef]
  31. Y. Cuiping, Q. Xiaochao, Z. Zhenxi, H. T. Gereon, and R. Ramtin, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” 14, 054034J. Biomed. Opt. (2009).
  32. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005). [CrossRef]
  33. N. N. Nedyalkov, H. Takada, and M. Obara, “Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles,” Appl. Phys. A 85, 163–168 (2006). [CrossRef]
  34. A. Csaki, F. Garwe, A. Steinbruck, G. Maubach, G. Festag, A. Weise, I. Riemann, K. Konig, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007). [CrossRef]
  35. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000). [CrossRef]
  36. O. Warshavski, L. Minai, G. Bisker, and D. Yelin, “Effect of single femtosecond pulses on gold nanoparticles,” J. Phys. Chem. C 115, 3910–3917 (2011). [CrossRef]
  37. H. Muto, K. Miyajima, and F. Mafune, “Mechanism of laser-induced size reduction of gold nanoparticles as studied by single and double laser pulse excitation,” J. Phys. Chem. C 112, 5810–5815 (2008). [CrossRef]
  38. A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103, 1226–1232 (1999). [CrossRef]
  39. E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C.-C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release 152, 286–293 (2011).
  40. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999). [CrossRef]
  41. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908). [CrossRef]
  42. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  43. U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Zeitschrift für Physik A 224, 307–323 (1969).
  44. S. P. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett. 5, 515–518 (2005). [CrossRef]
  45. B. S. Lucía and O. T. Jorge, “Size dependence of refractive index of gold nanoparticles,” Nanotechnology 17, 1309 (2006). [CrossRef]
  46. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972). [CrossRef]
  47. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1960).
  48. T. Okamoto and S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001), pp. 97–123.
  49. H. C. Hulst, Light Scattering by Small Particles (Courier Dover, 1981).
  50. M. Quinten, “Local fields and Poynting vectors in the vicinity of the surface of small spherical particles,” Zeitschrift für Physik D 35, 217–224 (1995).
  51. P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory,” IEEE J. Quantum Electron. 31, 2241–2249 (1995). [CrossRef]
  52. N. Kroll and K. M. Watson, “Theoretical study of ionization of air by intense laser pulses,” Phys. Rev. A 5, 1883 (1972). [CrossRef]
  53. Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Measurement of the collision time of dense electronic plasma inducedby a femtosecond laser in fused silica,” Opt. Lett. 30, 320–322 (2005). [CrossRef]
  54. F. Docchio, “Lifetimes of plasmas induced in liquids and ocular media by single Nd:YAG laser pulses of different duration,” Europhys. Lett. 6, 407 (1988). [CrossRef]
  55. W. Ferd, S. P. Varma, and S. Hillenius, “Liquid Water as a Lone-Pair Amorphous Semiconductor,” J. Chem. Phys. 64, 1549–1554 (1976).
  56. P. Buffat and J. P. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A 13, 2287–2298 (1976). [CrossRef]
  57. W. Luo, W. Hu, and S. Xiao, “Size effect on the thermodynamic properties of silver nanoparticles,” J. Phys. Chem. C 112, 2359–2369 (2008). [CrossRef]
  58. W. M. Haynes, CRC Handbook of Chemistry and Physics, 91st ed. (CRC Press/Taylor and Francis, 2011).
  59. M. Liu, P. Guyot-Sionnest, T.-W. Lee, and S. K. Gray, “Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations,” Phys. Rev. B 76, 235428 (2007). [CrossRef]
  60. V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124, 184702–184707 (2006). [CrossRef]
  61. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258–2260 (1995). [CrossRef]
  62. F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989). [CrossRef]
  63. J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997). [CrossRef]
  64. P. V. AshaRani, G. Low Kah Mun, M. P. Hande, and S. Valiyaveettil, “Cytotoxicity and genotoxicity of silver nanoparticles in human cells,” ACS Nano 3, 279–290 (2009). [CrossRef]
  65. A. K. Iyer, G. Khaled, J. Fang, and H. Maeda, “Exploiting the enhanced permeability and retention effect for tumor targeting,” Drug Discov. Today 11, 812–818 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited