OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1394–1398

Injection-locked diode laser current modulation for Pound-Drever-Hall frequency stabilization using transfer cavities

C. E. Liekhus-Schmaltz, R. Mantifel, M. Torabifard, I. B. Burgess, and J. D. D. Martin  »View Author Affiliations


JOSA B, Vol. 29, Issue 6, pp. 1394-1398 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001394


View Full Text Article

Enhanced HTML    Acrobat PDF (581 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A phase-modulated RF current source is applied to an injection-locked diode laser operating at 780 nm. This produces tunable phase-modulated sidebands of the laser suitable for stabilizing the length of an optical transfer cavity using the Pound-Drever-Hall technique. The Pound-Drever-Hall signal is antisymmetric about the lock point, despite the presence of significant diode laser amplitude modulation. The stabilized optical transfer cavity is used to frequency stabilize a 776 nm external cavity diode laser. The stability and tunability of this transfer cavity locked laser is established by observation of the hyperfine components of the Rb 87 5 P 3 / 2 5 D 5 / 2 transition in a vapor cell.

© 2012 Optical Society of America

OCIS Codes
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: December 23, 2011
Revised Manuscript: March 2, 2012
Manuscript Accepted: March 6, 2012
Published: May 23, 2012

Citation
C. E. Liekhus-Schmaltz, R. Mantifel, M. Torabifard, I. B. Burgess, and J. D. D. Martin, "Injection-locked diode laser current modulation for Pound-Drever-Hall frequency stabilization using transfer cavities," J. Opt. Soc. Am. B 29, 1394-1398 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-6-1394


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15,” Opt. Lett. 32, 641–643 (2007). [CrossRef]
  2. B. Burghardt, W. Jitschin, and G. Meisel, “Precise rf tuning for cw dye lasers,” Appl. Phys. 20, 141–146 (1979). [CrossRef]
  3. T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth,” Opt. Express 18, 9739–9746 (2010). [CrossRef]
  4. D. F. Plusquellic, O. Votava, and D. J. Nesbitt, “Absolute frequency stabilization of an injection-seeded optical parametric oscillator,” Appl. Opt. 35, 1464–1472 (1996). [CrossRef]
  5. P. Bohlouli-Zanjani, K. Afrousheh, and J. D. D. Martin, “Optical transfer cavity stabilization using current-modulated injection-locked diode lasers,” Rev. Sci. Instrum. 77, 093105 (2006). [CrossRef]
  6. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  7. R. W. Fox, C. W. Oates, and L. Hollberg, “Stabilizing diode lasers to high finesse cavities,” in Experimental Methods in the Physical Sciences; Cavity-Enhanced Spectroscopies, Vol. 40, R. D. V. Zee and J. Looney, eds. (Academic, 2002), Chap. 1, pp. 1–46.
  8. A. Siegman, Lasers (University Science Books, 1986).
  9. S. Kobayashi and T. Kimura, “Optical phase modulation in an injection locked AlGaAs semiconductor laser,” IEEE J. Quantum Electron. 18, 1662–1669 (1982). [CrossRef]
  10. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980). [CrossRef]
  11. R. V. Pound, “Electronic frequency stabilization of microwave oscillators,” Rev. Sci. Instrum. 17, 490–493 (1946). [CrossRef]
  12. C. E. Liekhus-Schmaltz and J. D. D. Martin, “ Understanding Pound-Drever-Hall locking using voltage controlled radio-frequency oscillators: An undergraduate experiment,” Am. J. Phys. 80, 232–239 (2012). [CrossRef]
  13. S. H. Youn, M. Lu, U. Ray, and B. L. Lev, “Dysprosium magneto-optical traps,” Phys. Rev. A 82, 043425 (2010).
  14. S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, “Direct frequency modulation in AlGaAs semiconductor lasers,” IEEE J. Quantum Electron. 18, 582–595 (1982). [CrossRef]
  15. O. Lidoyne, P. Gallion, and D. Erasme, “Modulation properties of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 27, 344–351 (1991). [CrossRef]
  16. G. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Library (Cambridge University, 1995).
  17. T. T. Grove, V. Sanchez-Villicana, B. C. Duncan, S. Maleki, and P. L. Gould, “Two-photon two-color diode laser spectroscopy of the Rb 5D5/2 state,” Phys. Scr. 52, 271–276 (1995). [CrossRef]
  18. F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2−5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993). [CrossRef]
  19. J. A. Petrus, P. Bohlouli-Zanjani, and J. D. D. Martin, “ac electric-field-induced resonant energy transfer between cold Rydberg atoms,” J. Phys. B 41, 245001 (2008).
  20. J. Helmcke, S. A. Lee, and J. L. Hall, “Dye laser spectrometer for ultrahigh spectral resolution: design and performance,” Appl. Opt. 21, 1686–1694 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited