## Single-photon-assisted entanglement concentration of a multiphoton system in a partially entangled W state with weak cross-Kerr nonlinearity |

JOSA B, Vol. 29, Issue 6, pp. 1399-1405 (2012)

http://dx.doi.org/10.1364/JOSAB.29.001399

Acrobat PDF (257 KB)

### Abstract

We propose a nonlocal entanglement concentration protocol (ECP) for N-photon systems in a partially entangled W state, resorting to some ancillary single photons and the parity-check measurement based on cross-Kerr nonlinearity. One party in quantum communication first performs a parity-check measurement on her photon in an N-photon system and an ancillary photon, and then she picks up the even-parity instance for obtaining the standard W state. When she obtains an odd-parity instance, the system is in a less-entanglement state, and it is the resource in the next round of entanglement concentration. By iterating the entanglement concentration process several times, the present ECP has a total success probability approaching the limit in theory. The present ECP has the advantage of a high success probability. Moreover, the present ECP requires only the N-photon system itself and some ancillary single photons, not two copies of the systems, which decreases the difficulty of its implementation greatly in experiment. It may have good applications in quantum communication in the future.

© 2012 Optical Society of America

**OCIS Codes**

(270.0270) Quantum optics : Quantum optics

(270.5585) Quantum optics : Quantum information and processing

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: March 19, 2012

Manuscript Accepted: March 28, 2012

Published: May 23, 2012

**Citation**

Fang-Fang Du, Tao Li, Bao-Cang Ren, Hai-Rui Wei, and Fu-Guo Deng, "Single-photon-assisted entanglement concentration of a multiphoton system in a partially entangled W state with weak cross-Kerr nonlinearity," J. Opt. Soc. Am. B **29**, 1399-1405 (2012)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-6-1399

Sort: Year | Journal | Reset

### References

- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
- A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
- C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992). [CrossRef]
- G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002). [CrossRef]
- F. G. Deng and G. L. Long, “Controlled order rearrangement encryption for quantum key distribution,” Phys. Rev. A 68, 042315 (2003). [CrossRef]
- X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008). [CrossRef]
- C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
- C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
- X. S. Liu, G. L. Long, D. M. Tong, and L. Feng, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002). [CrossRef]
- M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999). [CrossRef]
- A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999). [CrossRef]
- L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004). [CrossRef]
- F. G. Deng, G. L. Long, and H. Y. Zhou, “Bidirectional quantum secret sharing and secret splitting with polarized single photons,” Phys. Lett. A 337, 329–334 (2005). [CrossRef]
- F. G. Deng, X. H. Li, and H. Y. Zhou, “Efficient high-capacity quantum secret sharing with two-photon entanglement,” Phys. Lett. A 372, 1957–1962 (2008). [CrossRef]
- Z. J. Zhang, Y. Li, and Z. X. Man, “Multiparty quantum secret sharing,” Phys. Rev. A 71, 044301 (2005). [CrossRef]
- F. L. Yan and T. Gao, “Quantum secret sharing between multiparty and multiparty without entanglement,” Phys. Rev. A 72, 012304 (2005). [CrossRef]
- F. G. Deng, X. H. Li, H. Y. Zhou, and Z. J. Zhang, “Improving the security of multiparty quantum secret sharing against Trojan horse attack,” Phys. Rev. A 72, 044302 (2005). [CrossRef]
- A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004). [CrossRef]
- F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005). [CrossRef]
- F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements,” Eur. Phys. J. D 39, 459–464 (2006). [CrossRef]
- X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975–1983 (2006). [CrossRef]
- Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient and economic five-party quantum state sharing of an arbitrary m-qubit state,” Eur. Phys. J. D 48, 279–284 (2008). [CrossRef]
- A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998). [CrossRef]
- C. P. Yang, S. I. Chu, and S. Han, “Efficient many-party controlled teleportation of multiqubit quantum information via entanglement,” Phys. Rev. A 70, 022329 (2004). [CrossRef]
- F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005). [CrossRef]
- Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherence-free subspaces in quantum key distribution,” Phys. Rev. Lett. 91, 087901 (2003). [CrossRef]
- J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,” Phys. Rev. Lett. 92, 017901 (2004). [CrossRef]
- J. C. Boileau, R. Laflamme, M. Laforest, and C. R. Myers, “Robust quantum communication using a polarization-entangled photon pair,” Phys. Rev. Lett. 93, 220501 (2004). [CrossRef]
- X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008). [CrossRef]
- T. Yamamoto, J. Shimamura, S. K. Özdemir, M. Koashi, and N. Imoto, “Faithful qubit distribution assisted by one additional qubit against collective noise,” Phys. Rev. Lett. 95, 040503 (2005). [CrossRef]
- X. H. Li, B. K. Zhao, Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient faithful qubit transmission with frequency degree of freedom,” Opt. Commun. 282, 4025–4027 (2009). [CrossRef]
- X. H. Li, F. G. Deng, and H. Y. Zhou, “Faithful qubit transmission against collective noise without ancillary qubits,” Appl. Phys. Lett. 91, 144101 (2007). [CrossRef]
- F. G. Deng, X. H. Li, and H. Y. Zhou, “Passively self-error-rejecting qubit transmission over a collective-noise channel,” Quantum Inf. Comput. 11, 0913–0924 (2011).
- Y. B. Sheng and F. G. Deng, “Efficient quantum entanglement distribution over an arbitrary collective-noise channel,” Phys. Rev. A 81, 042332 (2010). [CrossRef]
- C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996). [CrossRef]
- D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996). [CrossRef]
- J. W. Pan, C. Simon, and A. Zellinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001). [CrossRef]
- C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901(2002). [CrossRef]
- Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008). [CrossRef]
- Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010). [CrossRef]
- X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010). [CrossRef]
- Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010). [CrossRef]
- F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A 83, 062316 (2011). [CrossRef]
- C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011). [CrossRef]
- C. Wang, Y. Zhang, and G. S. Jin, “Polarization-entanglement purification and concentration using cross-Kerr nonlinearity,” Quantum Inf. Comput. 11, 0988–1002 (2011).
- F. G. Deng, “Efficient multipartite entanglement purification with the entanglement link from a subspace,” Phys. Rev. A 84, 052312 (2011). [CrossRef]
- C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996). [CrossRef]
- S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999). [CrossRef]
- B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A 62, 054301 (2000). [CrossRef]
- T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001). [CrossRef]
- Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001). [CrossRef]
- Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008). [CrossRef]
- Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Single-photon entanglement concentration for long-distance quantum communication,” Quantum Inf. Comput. 10, 0272–0281 (2010).
- Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012). [CrossRef]
- F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A 85, 022311 (2012). [CrossRef]
- M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A 71, 044302 (2005). [CrossRef]
- Z. L. Cao, L. H. Zhang, and M. Yang, “Concentration for unknown atomic entangled states via cavity decay,” Phys. Rev. A 73, 014303 (2006). [CrossRef]
- H. F. Wang, S. Zhang, and K. H. Yeon, “Linear optical scheme for entanglement concentration of two partially entangled threephoton W states,” Eur. Phys. J. D 56, 271–275 (2010). [CrossRef]
- H. F. Wang, S. Zhang, and K. H. Yeon, “Linear-optics-based entanglement concentration of unknown partially entangled three-photon W states,” J. Opt. Soc. Am. B 27, 2159–2164 (2010). [CrossRef]
- W. Xiong and L. Ye, “Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 28, 2030–2037 (2011). [CrossRef]
- K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-not gate,” Phys. Rev. Lett. 93, 250502 (2004). [CrossRef]
- S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.