OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1443–1455

Effective permittivity of dense random particulate plasmonic composites

Satvik N. Wani, Ashok S. Sangani, and Radhakrishna Sureshkumar  »View Author Affiliations

JOSA B, Vol. 29, Issue 6, pp. 1443-1455 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (843 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An effective-medium theory (EMT) is developed to predict the effective permittivity εeff of dense random dispersions of high optical-conductivity metals such as Ag, Au, and Cu. Dependence of εeff on the volume fraction ϕ, a microstructure parameter κ related to the static structure factor and particle radius a, is studied. In the electrostatic limit, the upper and lower bounds of κ correspond to Maxwell–Garnett and Bruggeman EMTs, respectively. Finite size effects are significant when |β2(ka/n)3| becomes O(1), where β, k, and n denote the nanoparticle polarizability, wavenumber, and matrix refractive index, respectively. The coupling between the particle and effective medium results in a red-shift in the resonance peak, a nonlinear dependence of εeff on ϕ, and Fano resonance in εeff.

© 2012 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(260.2110) Physical optics : Electromagnetic optics
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance
(260.2065) Physical optics : Effective medium theory
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: February 14, 2012
Manuscript Accepted: March 24, 2012
Published: May 30, 2012

Satvik N. Wani, Ashok S. Sangani, and Radhakrishna Sureshkumar, "Effective permittivity of dense random particulate plasmonic composites," J. Opt. Soc. Am. B 29, 1443-1455 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza, and S. A. Maier, “Nanoporous plasmonic metamaterials,” Adv. Mater. 20, 1211–1217 (2008). [CrossRef]
  2. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22, 4794–4808 (2010). [CrossRef]
  3. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001). [CrossRef]
  4. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19, 3771–3782 (2007). [CrossRef]
  5. J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. 22, 1102–1110 (2010). [CrossRef]
  6. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010). [CrossRef]
  7. T. Cong, S. N. Wani, P. A. Paynter, and R. Sureshkumar, “Structure and optical properties of self-assembled multicomponent plasmonic nanogels,” Appl. Phys. Lett. 99, 043112 (2011). [CrossRef]
  8. J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, “Pulsed-laser-induced dewetting in nanoscopic metal films: theory and experiments,” Phys. Rev. B 75, 235439 (2007). [CrossRef]
  9. T. Li, J. Moon, A. A. Morrone, J. J. Mecholsky, D. R. Talham, and J. H. Adair, “Preparation of Ag/SiO2 nanosize composites by a reverse micelle and sol–gel technique,” Langmuir 15, 4328–4334 (1999). [CrossRef]
  10. D. D. Smith, L. A. Snow, L. Sibille, and E. Ignont, “Tunable optical properties of metal nanoparticle sol–gel composites,” J. Non-Cryst. Solids 285, 256–263 (2001). [CrossRef]
  11. L. M. Liz-Marzán, “Tailoring surface plasmons through the morphology and assembly of metal nanoparticles,” Langmuir 22, 32–41 (2006). [CrossRef]
  12. A. Biswas, O. C. Aktas, U. Schurmann, U. Saeed, V. Zaporojtchenko, F. Faupel, and T. Strunskus, “Tunable multiple plasmon resonance wavelengths response from multicomponent polymer-metal nanocomposite systems,” Appl. Phys. Lett. 84, 2655–2657 (2004). [CrossRef]
  13. Z. Liu, H. Wang, H. Li, and X. Wang, “Red shift of plasmon resonance frequency due to the interacting Ag nanoparticles embedded in single crystal Sio2 by implantation,” Appl. Phys. Lett. 72, 1823–1825 (1998). [CrossRef]
  14. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105–093108 (2007). [CrossRef]
  15. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef]
  16. S. Torkamani, S. N. Wani, Y. J. Tang, and R. Sureshkumar, “Plasmon-enhanced microalgal growth in miniphotobioreactors,” Appl. Phys. Lett. 97, 043703–043703 (2010). [CrossRef]
  17. D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photon. 5, 583–590 (2011). [CrossRef]
  18. O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89,191116 (2006). [CrossRef]
  19. T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Opt. Lett. 25, 372–374 (2000). [CrossRef]
  20. A. Dawson and P. V. Kamat, “Semiconductor–metal nanocomposites. Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/Gold) nanoparticles,” J. Phys. Chem. B 105, 960–966 (2001). [CrossRef]
  21. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  22. S. A. Maier, Plasmonics (Springer Science+Business Media, 2007).
  23. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef]
  24. C. Oubre and P. Nordlander, “Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method,” J. Phys. Chem. B 108, 17740–17747 (2004). [CrossRef]
  25. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  26. F. Kaminski, V. Sandoghdar, and M. Agio, “Finite-difference time-domain modeling of decay rates in the near field of metal nanostructures,” J. Comp. Theor. Nanosci. 4, 635–643 (2007).
  27. T. C. Choy, Effective Medium Theory (Oxford University, 1999).
  28. J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Phil. Trans. R. Soc. A 203, 385–420 (1904). [CrossRef]
  29. P. Mallet, C. A. Guérin, and A. Sentenac, “Maxwell–Garnett mixing rule in the presence of multiple scattering: derivation and accuracy,” Phys. Rev. B 72, 014205 (2005). [CrossRef]
  30. R. Ruppin, “Evaluation of extended Maxwell–Garnett theories,” Opt. Commun. 182, 273–279 (2000). [CrossRef]
  31. V. Yannopapas, “Effective-medium description of disordered photonic alloys,” J. Opt. Soc. Am. B 23, 1414–1419 (2006). [CrossRef]
  32. D. M. Wood and N. W. Ashcroft, “Effective medium theory of the optical properties of small particle composites,” Philos. Mag. 35, 269–280 (1977). [CrossRef]
  33. P. D. M. Spelt, M. A. Norato, A. S. Sangani, M. S. Greenwood, and L. L. Tavlarides, “Attenuation of sound in concentrated suspensions: theory and experiments,” J. Fluid Mech. 430, 51–86 (2001). [CrossRef]
  34. G. Mo and A. S. Sangani, “A method for computing Stokes flow interactions among spherical objects and its application to suspensions of drops and porous particles,” Phys. Fluids 6, 1637–1652 (1994). [CrossRef]
  35. T. L. Dodd, D. A. Hammer, A. S. Sangani, and D. L. Koch, “Numerical simulations of the effect of hydrodynamic interactions on diffusivities of integral membrane proteins,” J. Fluid Mech. 293, 147–180 (1995). [CrossRef]
  36. A. S. Sangani and C. Yao, “Bulk thermal conductivity of composites with spherical inclusions,” J. Appl. Phys. 63, 1334–1341 (1988). [CrossRef]
  37. A. S. Sangani, “A pairwise interaction theory for determining the linear acoustic properties of dilute bubbly liquids,” J. Fluid Mech. 232, 221–284 (1991). [CrossRef]
  38. A. S. Sangani and W. Lu, “Elastic coefficients of composites containing spherical inclusions in a periodic array,” J. Mech. Phys. Solids 35, 1–21 (1987). [CrossRef]
  39. S. Koo and A. S. Sangani, “Effective-medium theories for predicting hydrodynamic transport properties of bidisperse suspensions,” Phys. Fluids 14, 3522–3533 (2002). [CrossRef]
  40. N. F. Carnahan and K. E. Starling, “Equation of state for nonattracting rigid spheres,” J. Chem. Phys. 51, 635–636 (1969). [CrossRef]
  41. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon Press, 1961).
  42. R. F. Harrington, Time-Harmonic Electromagnetic Fields (IEEE, 2001).
  43. R. L. Hightower and C. B. Richardson, “Resonant Mie scattering from a layered sphere,” Appl. Opt. 27, 4850–4855 (1988). [CrossRef]
  44. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical tables (Dover, 1970).
  45. D. Zwillinger, Handbook of Integration (Jones and Bartlett, 1992).
  46. C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations (SIAM, 1995).
  47. N-k database, http://www.sopra-sa.com .
  48. A. H. Sihvola, Electromagnetic Mixing Formulas and Applications (Institution of Electrical Engineers, 1999).
  49. H. Garcia, J. Trice, R. Kalyanaraman, and R. Sureshkumar, “Self-consistent determination of plasmonic resonances in ternary nanocomposites,” Phys. Rev. B 75, 045439 (2007). [CrossRef]
  50. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart, and Winston, 1976).
  51. M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113, 3041–3045 (2009). [CrossRef]
  52. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles:  the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  53. See Appendix A.
  54. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  55. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866 (1961). [CrossRef]
  56. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011). [CrossRef]
  57. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010). [CrossRef]
  58. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010). [CrossRef]
  59. H. Garcia, R. Kalyanaraman, and R. Sureshkumar, “Nonlinear optical properties of multi-metal nanocomposites in a glass matrix,” J. Phys. B 42, 175401 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited