OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1465–1472

Chiral and nonchiral nematic liquid-crystal reorientation induced by inhomogeneous electric fields

Filip A. Sala and Mirosław A. Karpierz  »View Author Affiliations

JOSA B, Vol. 29, Issue 6, pp. 1465-1472 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1126 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present exact equations and numerical solutions for molecular reorientation in chiral and nonchiral nematic liquid crystals induced by the inhomogeneous field of a shape corresponding to the Gaussian light beam. We show the importance of the individual terms for different light polarization and intensity. We also present examples of simplified equations for particular cases.

© 2012 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:

Original Manuscript: January 5, 2012
Manuscript Accepted: February 8, 2012
Published: May 30, 2012

Filip A. Sala and Mirosław A. Karpierz, "Chiral and nonchiral nematic liquid-crystal reorientation induced by inhomogeneous electric fields," J. Opt. Soc. Am. B 29, 1465-1472 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. G. de Gennes, The Physics of Liquid Crystals (Clarendon, 1974).
  2. I.-C. Khoo, Liquid Crystals (Wiley, 2007).
  3. B. Ya. Zel’dovich and N. V. Tabiryan, “Orientational optical nonlinearity of liquid crystals,” Sov. Phys. Usp. 28, 1059–1083 (1985). [CrossRef]
  4. F. Simoni, Nonlinear Optical Properties of Liquid Crystals (World Scientific, 1997).
  5. G. Assanto, M. Peccianti, and C. Conti, “Nematicons: optical spatial solitons in nematic liquid crystals,” Opt. Photon. News 14(2), 44–48 (2003). [CrossRef]
  6. G. Assanto, and M. A. Karpierz, “Nematicons: self-localised beams in nematic liquid crystals,” Liq. Cryst. 36, 1161–1172 (2009). [CrossRef]
  7. M. Warenghem, J. F. Henninot, and G. Abbate, “Non linearly induced self waveguiding structure in dye doped nematic liquid crystals confined in capillaries,” Opt. Express 2, 483–490 (1998). [CrossRef]
  8. J. Beeckman, K. Neyts, and M. Haelterman, “Patterned electrode steering of nematicons,” J. Opt. A 8, 214–220 (2006). [CrossRef]
  9. U. A. Laudyn, M. Kwasny, and M. A. Karpierz, “Nematicons in chiral nematic liquid crystals,” Appl. Phys. Lett. 94, 091110 (2009). [CrossRef]
  10. Y. V. Izdebskaya, A. S. Desyatnikov, G. Assanto, and Y. S. Kivshar, “Multimode nematicon waveguides,” Opt. Lett. 36, 184–186 (2011). [CrossRef]
  11. A. Piccardi, U. Bortolozzo, S. Residori, and G. Assanto, “Spatial solitons in liquid-crystal light valves,” Opt. Lett. 34, 737–739 (2009). [CrossRef]
  12. Q. Wang, S. He, F. Yu, and N. Huang, “Iterative finite-difference method for calculating the distribution of a liquid-crystal director,” Opt. Eng. 40, 2552–2557 (2001). [CrossRef]
  13. E. Santamato, P. Maddalena, M. Settembre, M. Romagnoli, and B. Daino, “TM modes in a slab waveguide filled with nematic liquid crystal in an external magnetic field,” J. Opt. Soc. Am. B 6, 126–130 (1989). [CrossRef]
  14. M. A. Karpierz, “Solitary waves in liquid crystalline waveguides,” Phys. Rev. E 66, 036603 (2002). [CrossRef]
  15. A. Alberucci and G. Assanto, “Propagation of optical spatial solitons in finite-size media: interplay between nonlocality and boundary conditions,” J. Opt. Soc. Am. B 24, 2314–2320 (2007). [CrossRef]
  16. F. A. Sala and M. A. Karpierz, “Numerical simulation of beam propagation in a layer filled with chiral nematic liquid crystals,” Photonics Lett. Pol. 1, 163–165 (2009). [CrossRef]
  17. M. A. Karpierz, “Nonlinear properties of waveguides with twisted nematic liquid crystal,” Acta Phys. Pol. A 99, 161–173 (2001).
  18. P. J. M. Vanbrabant, J. Beeckman, K. Neyts, R. James, and F. A. Fernandez, “A finite element beam propagation method for simulation of liquid crystal devices,” Opt. Express 17, 10895 (2009). [CrossRef]
  19. A. A. Minzoni, N. F. Smyth, and A. L. Worthy, “Modulation solutions for nematicon propagation in nonlocal liquid crystals,” J. Opt. Soc. Am. B 24, 1549–1556 (2007). [CrossRef]
  20. C. Conti, M. Peccianti, and G. Assanto, “Route to nonlocality and observation of accessible solitons,” Phys. Rev. Lett. 91, 073901 (2003). [CrossRef]
  21. E. Brasselet, B. Doyon, T. V. Galstian, and L. J. Dubé, “Optically induced dynamics in nematic liquid crystals: the role of twist deformation and asymmetry,” Phys. Rev. E 67, 031706 (2003). [CrossRef]
  22. F. A. Sala and M. A. Karpierz, “Modeling of nonlinear beam propagation in chiral nematic liquid crystals,” Mol. Cryst. Liq. Cryst.558, 176–183 (2012).
  23. M. Peccianti, A. Dyadyusha, M. Kaczmarek, and Gaetano Assanto, “Escaping solitons from a trapping potential,” Phys. Rev. Lett. 101, 153902 (2008). [CrossRef]
  24. M. Peccianti, A. Dyadyusha, M. Kaczmarek, and Gaetano Assanto, “Tunable refraction and reflection of self-confined light beams,” Nat. Phys. 2, 737–742 (2006). [CrossRef]
  25. W. Baran, Z. Raszewski, R. Dabrowski, and J. Kedzierski, “Some physical properties of mesogenic 4-(trans-4′-n-alkylcyclohexyl) isothiocyanatobenzenes,” Mol. Cryst. Liq. Cryst. 123, 237–245 (1985). [CrossRef]
  26. R. Dabrowski, J. Dziaduszek, and T. Szczucinski, “Mesomorphic characteristics of some new homologous series with the isothiocyanato terminal group,” Mol. Cryst. Liq. Cryst. 124, 241–257 (1985). [CrossRef]
  27. D. M. Young, “Iterative methods for solving partial difference equations of elliptical type,” Ph.D. thesis (Harvard University, 1950).
  28. L. Hageman and D. Young, Applied Iterative Methods(Academic, 1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited