OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1473–1478

Optical Fock-state generation with large number of photons based on atoms coupled to an optical parametric oscillator

Jing Zhang, Junmin Wang, and Tiancai Zhang  »View Author Affiliations


JOSA B, Vol. 29, Issue 6, pp. 1473-1478 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001473


View Full Text Article

Enhanced HTML    Acrobat PDF (480 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optical field with a definite number of photons is very important for quantum metrology and quantum information. Some theoretical protocols for creating such a Fock-state have been proposed, but it is still a big challenge to produce it with a large number photons experimentally. We revisit the system of atoms inside an optical parametric oscillator that was proposed in 1990s, and it is found that for the atom ensemble, the optical Fock-state with an arbitrary number of photons can be generated. Compared to the previous proposals, the scheme presented here is simple and seems physically realizable. The system also provides the possibility to demonstrate the strong interaction between nonclassical light and atoms in a confined space.

© 2012 Optical Society of America

OCIS Codes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(270.5290) Quantum optics : Photon statistics
(270.6570) Quantum optics : Squeezed states
(020.1335) Atomic and molecular physics : Atom optics

ToC Category:
Quantum Optics

History
Original Manuscript: November 22, 2011
Revised Manuscript: February 16, 2012
Manuscript Accepted: March 14, 2012
Published: June 1, 2012

Citation
Jing Zhang, Junmin Wang, and Tiancai Zhang, "Optical Fock-state generation with large number of photons based on atoms coupled to an optical parametric oscillator," J. Opt. Soc. Am. B 29, 1473-1478 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-6-1473


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, “Quantum states made to measure,” Nat. Photon. 3, 673–676 (2009). [CrossRef]
  2. C. M. Caves and P. D. Drummond, “Quantum limits on bosonic communication rates,” Rev. Mod. Phys. 66, 481–537 (1994). [CrossRef]
  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  4. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). [CrossRef]
  5. M. Holland and K. Burnett, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001). [CrossRef]
  6. K. R. Brown, K. M. Dani, D. M. Stamper-Kurn, and K. B. Whaley, “Deterministic optical Fock-state generation,” Phys. Rev. A 67, 043818 (2003). [CrossRef]
  7. M. N. O’Sullivan, K. W. C. Chan, V. Lakshminarayanan, and R. W. Boyd, “Conditional preparation of states containing a definite number of photons,” Phys. Rev. A 77, 023804 (2008). [CrossRef]
  8. J. M. Geremia, “Deterministic and nondestructively verifiable preparation of photon-number states,” Phys. Rev. Lett. 97, 073601 (2006). [CrossRef]
  9. I. Dotsenko, M. Mirrahimi, M. Brune, S. Haroche, J.-M. Raimond, and P. Rouchon, “Quantum feedback by discrete quantum nondemolition measurements: towards on-demand generation of photon-number states,” Phys. Rev. A 80, 013805 (2009). [CrossRef]
  10. C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J. Raimond, and S. Haroche, “Real-time quantum feedback prepares and stabilizes photon number states,” Nature 477, 73–77 (2011). [CrossRef]
  11. B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science 309, 454–456 (2005). [CrossRef]
  12. S. G. Lukishova, A. W. Schmid, A. J. McNamara, R. W. Boyd, and C. R. Stroud, “Room temperature single-photon source: single-dye molecule fluorescence in liquid crystal host,” IEEE J. Sel. Top. Quantum Electron. 9, 1512–1518 (2003). [CrossRef]
  13. J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500–503 (1999). [CrossRef]
  14. B. T. H. Varcoe, S. Brattke, M. Weidinger, and H. Walther, “Preparing pure photon number states of the radiation field,” Nature 403, 743–746 (2000). [CrossRef]
  15. E. Waks, E. Diamanti, and Y. Yamamoto, “Generation of photon number states,” New J. Phys. 8, 4 (2006). [CrossRef]
  16. D. Achilles, C. Silberhorn, and I. A. Walmsley, “Direct, loss-tolerant characterization of nonclassical photon statistics,” Phys. Rev. Lett. 97, 043602 (2006). [CrossRef]
  17. M. Xiao and S. Jin, “Bistable behavior in a system of an optical parametric oscillator coupling with N two-level atoms,” Phys. Rev. A 45, 483–488 (1992). [CrossRef]
  18. S. Jin and M. Xiao, “Extra intracavity squeezing of a degenerate optical parametric oscillator coupling with N two-level atoms,” Phys. Rev. A 49, 499–505 (1994). [CrossRef]
  19. F. A. Montes and M. Xiao, “Three-level atoms inside a degenerate optical parametric oscillator: steady-state behaviors,” Phys. Rev. A 62, 023818 (2000). [CrossRef]
  20. J. P. Clemens, P. R. Rice, P. K. Rungta, and R. J. Brecha, “Two-level atom in an optical parametric oscillator: Spectra of transmitted and fluorescent fields in the weak-driving-field limit,” Phys. Rev. A 62, 033802 (2000). [CrossRef]
  21. P. R. Rice, “Entanglement, teleportation, and single-photon storage with two-level atoms inside an optical parametric oscillator” J. Opt. Soc. Am. B 22, 1561–1565 (2005). [CrossRef]
  22. C. E. Strimbu, J. Leach, and P. R. Rice, “Conditional homodyne detection at the single-photon level: intensity-field correlations for a two-level atom in an optical parametric oscillator,” Phys. Rev. A 71, 013807 (2005). [CrossRef]
  23. E. Alebachew, “A coherently driven two-level atom inside a parametric oscillator,” J. Mod. Opt. 55, 1159–1173 (2008). [CrossRef]
  24. W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, 1973).
  25. H. J. Carmichael, “Quantum fluctuations in absorptive bistability without adiabatic elimination,” Phys. Rev. A 33, 3262–3269 (1986). [CrossRef]
  26. C. W. Gardinar, Handbook of Stochastic Methods (Springer, 1982).
  27. L. Mandel and E. Wolf, Quantum Coherence and Quantum Optics (Cambridge University, 1995).
  28. J. Zhang, J. M. Wang, and T. C. Zhang, “Entanglement and nonclassicality evolution of the atom in a squeezed vacuum,” Opt. Commun. 277, 353–358 (2007). [CrossRef]
  29. V. Josse, A. Dantan, L. Vernac, A. Bramati, M. Pinard, and E. Giacobino, “Polarization squeezing with cold atoms,” Phys. Rev. Lett. 91, 103601 (2003). [CrossRef]
  30. P. D. Drummond, K. J. Mcnell, and D. F. Walls, Optica Acta 28, 211 (1981). [CrossRef]
  31. Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, H. J. Kimble, and A. S. Parkins, “Squeezed excitation in cavity QED: experiment and theory,” Phys. Rev. A 58, 4056–4077 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited