Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Nanoscale electro-optic modulators based on graphene-slot waveguides

Not Accessible

Your library or personal account may give you access

Abstract

Research on graphene has revealed its remarkable electro-optic properties, which promise to satisfy the needs of future electro-optic modulators. However, its ultrasmall thickness, compared with operating light wavelength, downplays its role in an optoelectronic device. The key to achieve efficient electro-optic modulation based on graphene is to enhance its interaction with light. To this end, some novel waveguides and platforms will be employed to enhance the interaction. Herein, we present our recent exploration of graphene electro-optic modulators based on graphene sandwiched in dielectric or plasmonic waveguides. With a suitable gate voltage, the dielectric constant of graphene can be tuned to be very small due to the effect of intraband electronic transition, resulting in “graphene-slot waveguides” and greatly enhanced absorption modes. Up to 3 dB modulation depth can be achieved within 800 nm long silicon waveguides, or 120 nm long plasmonic waveguides based on three-dimensional numerical simulations. They have the advantages of nanoscale footprints, small insertion loss, low power consumption, and potentially ultrahigh speed, as well as being CMOS-compatible.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Design of electro-optic modulators based on graphene-on-silicon slot waveguides

Abhijeet Phatak, Zhenzhou Cheng, Changyuan Qin, and Keisuke Goda
Opt. Lett. 41(11) 2501-2504 (2016)

Characteristics of electro-refractive modulating based on Graphene-Oxide-Silicon waveguide

Chao Xu, Yichang Jin, Longzhi Yang, Jianyi Yang, and Xiaoqing Jiang
Opt. Express 20(20) 22398-22405 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved