OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1497–1502

Gain enhancement of fiber optical parametric amplifier via introducing phase-shifted fiber Bragg grating for phase matching

Hongna Zhu, Bin Luo, Wei Pan, Lianshan Yan, Shuiying Xiang, and Kunhua Wen  »View Author Affiliations

JOSA B, Vol. 29, Issue 6, pp. 1497-1502 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (559 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The gain enhancement properties of a fiber optical parametric amplifier (FOPA) are investigated by inserting a phase-shifted fiber Bragg grating (PS-FBG) between two highly nonlinear dispersion shift fibers (HNL-DSFs). The PS-FBG is adopted to reduce the power and change the phase of the idler wave, and thus to change the phase mismatch parameter and relative phase difference among the four involved waves in four-wave mixing (FWM). The influence of reflectivity and phase shift of the PS-FBG on the gain properties of FOPA is focused on. It is shown that, with the introduction of PS-FBG, the gain of FOPA is enhanced significantly. With the increase of reflectivity of PS-FBG, the gain increases first and reaches its maximum at the optimal reflectivity. Besides, the π-phase shift contributes to the highest gain of FOPA. The effect of insertion loss is also considered. The FOPA with PS-FBG provides a new tool to obtain gain enhancement, which is extremely useful for the optical communication system.

© 2012 Optical Society of America

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 22, 2012
Revised Manuscript: April 25, 2012
Manuscript Accepted: May 1, 2012
Published: June 1, 2012

Hongna Zhu, Bin Luo, Wei Pan, Lianshan Yan, Shuiying Xiang, and Kunhua Wen, "Gain enhancement of fiber optical parametric amplifier via introducing phase-shifted fiber Bragg grating for phase matching," J. Opt. Soc. Am. B 29, 1497-1502 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002). [CrossRef]
  2. H. Steffensen, J. R. Ott, K. Rottwitt, and C. J. McKinstrie, “Full and semi-analytic analyses of two-pump parametric amplification with pump depletion,” Opt. Express 19, 6648–6656(2011). [CrossRef]
  3. J. Kakande, C. Lundström, P. A. Andrekson, Z. Tong, M. Karlsson, P. Petropoulos, F. Parmigiani, and D. J. Richardson, “Detailed characterization of a fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation,” Opt. Express 18, 4130–4137 (2010). [CrossRef]
  4. C.-S. Brès, A. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Multicasting of 320  Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1002–1004(2009). [CrossRef]
  5. K. Croussore and G. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification,” IEEE Photon. Technol. Lett. 19, 864–866 (2007). [CrossRef]
  6. Y. Zhou, Q. Li, K. Cheung, S. Yang, P. Chui, and K. K. Y. Wong, “All-fiber-based ultrashort pulse generation and chirped pulse amplification through parametric processes,” IEEE Photon. Technol. Lett. 22, 1330–1332 (2010). [CrossRef]
  7. A. Bogris and D. Syvridis, “40  Gb/s all-optical regeneration based on the pump depletion effect in fiber parametric amplification,” Opt. Fiber Technol. 14, 63–71 (2008). [CrossRef]
  8. L. Gui, K. Xu, D. P. Wang, J. Wu, X. B. Hong, Y. T. Dai, J. Y. Zhang, and J. T. Lin, “Character analysis of slow light with communication waveband in fiber optical parametric amplifier,” Opt. Commun. 283, 4350–4357 (2010). [CrossRef]
  9. Q. Lin, R. Jiang, C. F. Marki, C. J. McKinstrie, R. Jopson, J. Ford, G. P. Agrawal, and S. Radic, “40  Gb/s optical switching and wavelength multicasting in a two-pump parametric device,” IEEE Photon. Technol. Lett. 17, 2376–2378 (2005). [CrossRef]
  10. J. Li, J. Hansryd, P.-O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300  Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett. 13, 987–989 (2001). [CrossRef]
  11. L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillotte, “Broadband and flat parametric amplifiers with a multisection dispersion-tailored nonlinear fiber arrangement,” J. Opt. Soc. Am. B 20, 1532–1537 (2003). [CrossRef]
  12. J. Kim, Ö. Boyraz, J. H. Lim, and M. N. Islam, “Gain enhancement in cascaded fiber parametric amplifier with quasi-phase matching: theory and experiment,” J. Lightwave Technol. 19, 247–251 (2001). [CrossRef]
  13. D. Bigourd, L. Lago, A. Kudlinski, E. Hugonnot, and A. Mussot, “Dynamics of fiber optical parametric chirped pulse amplifiers,” J. Opt. Soc. Am. B 28, 2848–2854 (2011). [CrossRef]
  14. F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuation on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 1292–1294(2004). [CrossRef]
  15. H. Cao, J. Sun, G. Chen, and D. Hang, “A novel dispersionless comb gain equalizer for fiber optical parametric amplifier,” Fiber Integr. Opt. 25, 279–286 (2006). [CrossRef]
  16. Q. Li and Y. Zhu, “Theoretical analysis of the polarization- and frequency-dependent gain for fiber optical parametric amplifier,” Fiber Integr. Opt. 28, 288–300 (2009). [CrossRef]
  17. M. Gao, C. Jiang, W. Hu, and J. Wang, “Optimized design of two-pump fiber optical parametric amplifier with two-section nonlinear fibers using genetic algorithm,” Opt. Express 12, 5603–5613 (2004). [CrossRef]
  18. K. K. Y. Wong, K. Shimizu, K. Uesaka, G. Kalogerakis, M. E. Marhic, and L. G. Kazovsky, “Continuous-wave fiber optical parametric amplifier with 60 dB gain using a novel two-segment design,” IEEE Photon. Technol. Lett. 15, 1707–1709 (2003). [CrossRef]
  19. T. Torounidis, P. A. Andrekson, and B.-E. Olsson, “Fiber-optical parametric amplifier with 70 dB gain,” IEEE Photon. Technol. Lett. 18, 1194–1196 (2006). [CrossRef]
  20. M. E. Mahric, F. S. Yang, M.-C. Ho, and L. G. Kazovsky, “High-nonlinearity fiber optical parametric amplifier with periodic dispersion compensation,” J. Lightwave Technol. 17, 210–215 (1999). [CrossRef]
  21. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2008).
  22. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  23. K. Inoue and T. Mukai, “Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier,” Opt. Lett. 26, 10–12 (2001). [CrossRef]
  24. C. J. McKinstrie and M. G. Raymer, “Four-wave-mixing cascades near the zero-dispersion frequency,” Opt. Express 14, 9600–9610 (2006). [CrossRef]
  25. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997). [CrossRef]
  26. K. Wen, L. Yan, W. Pan, and B. Luo, “Design of fiber Bragg gratings with arbitrary reflective spectrum,” Opt. Eng. 50, 054003–054004 (2011). [CrossRef]
  27. K. Wen, L. Yan, W. Pan, B. Luo, X. Zou, and H. Zhu, “Design of multi-channel optical code-division multiple-access encoders and decoders based on sampled fiber Bragg gratings,” Optik 122, 2249–2251 (2011). [CrossRef]
  28. R. Zengerle and O. Lemiger, “Phase-shifted Bragg grating filters with improved transmission characteristics,” J. Lightwave Technol. 13, 2354–2358 (1995). [CrossRef]
  29. F. Bakhti and P. Sansonetti, “Wide bandwidth low loss and highly rejective doubly phase-shifted UV-written fiber bandpass filter,” Electron. Lett. 32, 581–582 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited