OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1521–1527

Demonstration of the wide control range Q factor of ring cavity with ultrashort directional coupler and curved photonic-crystal ring waveguide

Jun-ichiro Sugisaka, Noritsugu Yamamoto, Makoto Okano, Kazuhiro Komori, and Masahide Itoh  »View Author Affiliations


JOSA B, Vol. 29, Issue 6, pp. 1521-1527 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001521


View Full Text Article

Enhanced HTML    Acrobat PDF (462 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We extend the control range of the Q factor of a ring cavity that consists of a photonic crystal. The control range, which determines the storage time (high Q) and efficiency of input and output (low Q) of light, is required to be wide for the random-access memory of an optical pulse train. The conventional photonic-crystal ring cavity with a directional coupler and a hexagonal-shape ring waveguide has a very narrow range. We replace these components by a directional coupler having flat dispersion and a circularly curved ring waveguide. We experimentally varied the Q factor by thermal modulation of the device and achieved a control range between 1.9×103 and 1.7×104.

© 2012 Optical Society of America

OCIS Codes
(210.4680) Optical data storage : Optical memories
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Diffraction and Gratings

History
Original Manuscript: January 11, 2012
Revised Manuscript: April 11, 2012
Manuscript Accepted: April 20, 2012
Published: June 1, 2012

Citation
Jun-ichiro Sugisaka, Noritsugu Yamamoto, Makoto Okano, Kazuhiro Komori, and Masahide Itoh, "Demonstration of the wide control range Q factor of ring cavity with ultrashort directional coupler and curved photonic-crystal ring waveguide," J. Opt. Soc. Am. B 29, 1521-1527 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-6-1521


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003). [CrossRef]
  2. R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14, 324–335 (1996). [CrossRef]
  3. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]
  4. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef]
  5. D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6 nm free spectral range,” Opt. Lett. 22, 1244–1246 (1997). [CrossRef]
  6. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998). [CrossRef]
  7. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000). [CrossRef]
  8. S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11, 691–693 (1999). [CrossRef]
  9. S.-H. Kim, H.-Y. Ryu, H.-G. Park, G.-H. Kim, Y.-S. Choi, Y.-H. Lee, and J.-S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81, 2499–2501 (2002). [CrossRef]
  10. K. Furuya, N. Yamamoto, Y. Watanabe, and K. Komori, “Novel ring waveguide device in a 2D photonic crystal slab: transmittance simulated by finite-difference time-domain analysis,” Jpn. J. Appl. Phys. 43, 1995–2001 (2004). [CrossRef]
  11. M. David, F. Monifi, A. Ghaffari, and M. S. Abrishamian, “Heterostructure wavelength division demultiplexers using photonic crystal ring resonators,” Opt. Commun. 281, 4028–4032 (2008). [CrossRef]
  12. S. Kim, J. Cai, J. Jiang, and G. P. Nordin, “New ring resonator configuration using hybrid photonic crystal and conventional waveguide structures,” Opt. Express 12, 2356–2364 (2004). [CrossRef]
  13. D. Goldring, U. Levy, and D. Mendlovic, “Highly dispersive micro-ring resonator based on one dimensional photonic crystal waveguide design and analysis,” Opt. Express 15, 3156–3168 (2007). [CrossRef]
  14. S.-H. Jeong, N. Yamamoto, J. Sugisaka, M. Okano, and K. Komori, “GaAs-based two-dimensional photonic crystal slab ring resonator consisting of a directional coupler and bent waveguides,” J. Opt. Soc. Am. B 24, 1951–1959 (2007). [CrossRef]
  15. S.-H. Jeong, J. Sugisaka, N. Yamamoto, M. Okano, and K. Komori, “Resonant characteristics in a two-dimensional photonic crystal ring resonator with a triangular lattice of air holes,” Jpn. J. Appl. Phys. 46, L534–L536 (2007). [CrossRef]
  16. J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, T. Yatagai, and M. Itoh, “Development of curved two-dimensional photonic crystal waveguides,” Opt. Commun. 281, 5788–5792 (2008). [CrossRef]
  17. N. Yamamoto, T. Ogawa, and K. Komori, “Photonic crystal directional coupler switch with small switching length and wide bandwidth,” Opt. Express 14, 1223–1229 (2006). [CrossRef]
  18. J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, and M. Itoh, “Short photonic-crystal directional coupling optical switch of extended optical bandwidth using flat dispersion,” Jpn. J. Appl. Phys. 50, 032201 (2011). [CrossRef]
  19. N. Yamamoto, Y. Watanabe, and K. Komori, “Design of photonic crystal directional coupler with high extinction ratio and small coupling length,” Jpn. J. Appl. Phys. 44, 2575–2578 (2005). [CrossRef]
  20. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett. 7, 288–290 (1982). [CrossRef]
  21. Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, and K. Asakawa, “Low propagation loss of 0.76  dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length,” Opt. Express 12, 1090–1096 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited