OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1528–1534

Influence of light polarization on the analogy between ballistic nanostructures and the electromagnetic field

Daniela Dragoman  »View Author Affiliations


JOSA B, Vol. 29, Issue 6, pp. 1528-1534 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001528


View Full Text Article

Enhanced HTML    Acrobat PDF (400 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A set of analogous electron-light parameters for linearly polarized electromagnetic fields has been found for Schrödinger electrons. It is shown that the use of light polarization as an easily controllable parameter offers the possibility of a feasible practical implementation of optical structures with the same reflection coefficient as the corresponding ballistic structures for either Schrödinger or Dirac electrons.

© 2012 Optical Society of America

OCIS Codes
(000.1600) General : Classical and quantum physics
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: January 24, 2012
Revised Manuscript: March 26, 2012
Manuscript Accepted: April 3, 2012
Published: June 1, 2012

Citation
Daniela Dragoman, "Influence of light polarization on the analogy between ballistic nanostructures and the electromagnetic field," J. Opt. Soc. Am. B 29, 1528-1534 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-6-1528


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Dragoman and M. Dragoman, Quantum-Classical Analogies (Springer, 2002).
  2. S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photon. Rev. 3, 243–261 (2009). [CrossRef]
  3. G. N. Henderson, T. K. Gaylord, and E. N. Glytsis, “Ballistic electron transport in semiconductor heterostructures and its analogies in electromagnetic propagation in general dielectrics,” Proc. IEEE 79, 1643–1659 (1991). [CrossRef]
  4. T. K. Gaylord, G. N. Henderson, and E. N. Glytsis, “Application of electromagnetics formalism to quantum mechanical electron wave propagation in semiconductors,” J. Opt. Soc. Am. B 10, 333–339 (1993). [CrossRef]
  5. G. N. Henderson, T. K. Gaylord, and E. N. Glytsis, “Electromagnetic analogies to general Hamiltonian effective-mass electron wave propagation in semiconductors with spatially varying effective mass and potential energy,” Phys. Rev. B 45, 8404–8407 (1992). [CrossRef]
  6. S. Longhi, D. Janner, M. Marano, and P. Laporta, “Quantum-mechanical analogy of beam propagation in waveguides with a bent axis: dynamic-mode stabilization and radiation-loss suppression,” Phys. Rev. E 67, 036601 (2003). [CrossRef]
  7. F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, and S. Longhi, “Bloch–Zener oscillations in binary superlattices,” Phys. Rev. Lett. 102, 076802 (2009). [CrossRef]
  8. D. Dragoman and M. Dragoman, “Optical analogue structures to mesoscopic devices,” Prog. Quantum Electron. 23, 131–188 (1999). [CrossRef]
  9. S. Longhi, “Optical realization of relativistic non-Hermitian quantum mechanics,” Phys. Rev. Lett. 105, 013903 (2010). [CrossRef]
  10. S. Longhi, “Klein tunneling in binary photonic superlattices,” Phys. Rev. B 81, 075102 (2010). [CrossRef]
  11. S. Ghosh and M. Sharma, “Electron optics with magnetic vector potential barriers in graphene,” J. Phys. Condens. Matter 21, 292204 (2009). [CrossRef]
  12. T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80, 155103 (2009). [CrossRef]
  13. S. R. Zandbergen and M. J. A. de Dood, “Experimental observation of strong edge effects on the pseudodiffusive transport of light in photonic graphene,” Phys. Rev. Lett. 104, 043903 (2010). [CrossRef]
  14. P. Darancet, V. Olevano, and D. Mayou, “Coherent electronic transport through graphene constriction: subwavelength regime and optical analogy,” Phys. Rev. Lett. 102, 136803(2009). [CrossRef]
  15. O. Klemperer and M. E. Barnett, Electron Optics3rd ed.(Cambridge University, 2011).
  16. K. Sakoda, Optical Properties of Photonic Crystals2nd ed. (Springer, 2004).
  17. H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A 38, 10497–10535 (2005). [CrossRef]
  18. D. Dragoman and M. Dragoman, “The modeling of the quantum tunneling time through heterostructures using optical layered media,” Opt. Commun. 133, 129–134 (1997). [CrossRef]
  19. D. Dragoman and M. Dragoman, “Optical modelling of quantum wire arrays,” IEEE J. Quantum Electron. 33, 375–381 (1997). [CrossRef]
  20. D. Dragoman and M. Dragoman, “Optical modelling of quantum dots,” Opt. Commun. 150, 331–338 (1998). [CrossRef]
  21. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Measurement of the single-photon tunneling time,” Phys. Rev. Lett. 71, 708–711 (1993). [CrossRef]
  22. C. Spielmann, R. Szipöcs, A. Stingl, and F. Krausz, “Tunneling of optical pulses through photonic band gaps,” Phys. Rev. Lett. 73, 2308–2311 (1994). [CrossRef]
  23. P. Balcou and L. Dutriaux, “Dual optical tunnelling times in frustrated total internal reflection,” Phys. Rev. Lett. 78, 851–854 (1997). [CrossRef]
  24. S. Longhi, P. Laponta, M. Belmonte, and E. Recami, “Measurement of superluminal optical tunneling times in double-barrier photonic band gaps,” Phys. Rev. E 65, 046610 (2002). [CrossRef]
  25. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics2nd ed. (Wiley, 2007).
  26. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009). [CrossRef]
  27. Y. H. Wu, T. Yu, and Z. X. Shen, “Two-dimensional carbon nanostructures: fundamental properties, synthesis, characterization, and potential applications,” J. Appl. Phys. 108, 071301 (2010). [CrossRef]
  28. A. V. Shytov, M. S. Rudner, and L. S. Levitov, “Klein backscattering and Fabry–Pérot interference in graphene heterojunctions,” Phys. Rev. Lett. 101, 156804 (2008). [CrossRef]
  29. V. V. Cheianov, V. Fal’ko, and B. L. Altshuler, “The focusing of electron flow and a Veselago lens in graphene p-n junctions,” Science 315, 1252–1255 (2007). [CrossRef]
  30. J. Cserti, A. Pályi, and C. Péterfalvi, “Caustics due to a negative refractive index in circular graphene p-n junctions,” Phys. Rev. Lett. 99, 246801 (2007). [CrossRef]
  31. C. W. J. Beenakker, R. A. Sepkhanov, A. R. Akhmerov, and J. Tworzydŀo, “Quantum Goos–Hänchen effect in graphene,” Phys. Rev. Lett. 102, 146804 (2009). [CrossRef]
  32. M. Sharma and S. Ghosh, “Electron transport and Goos–Hänchen shift in graphene with electric and magnetic barriers: optical analogy and band structure,” J. Phys. Condens. Matter 23, 055501 (2011). [CrossRef]
  33. D. Dragoman, “Polarization optics analogy of quantum wavefunctions in graphene,” J. Opt. Soc. Am. B 27, 1325–1331(2010). [CrossRef]
  34. I. Mihalache and D. Dragoman, “Graphene analogy to electromagnetic field propagation,” J. Opt. Soc. Am. B 28, 1746–1751(2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited