## Engineering W-type steady states for three atoms via dissipation in an optical cavity |

JOSA B, Vol. 29, Issue 6, pp. 1535-1540 (2012)

http://dx.doi.org/10.1364/JOSAB.29.001535

Enhanced HTML Acrobat PDF (373 KB)

### Abstract

We propose a scheme for dissipative preparation of W-type entangled steady states of three atoms trapped in an optical cavity. The scheme is based on the competition between the decay processes into and out of the target state. By suitable choice of system parameters, we resolve the whole evolution process and employ the effective operator formalism to engineer four independent decay processes so that the target state becomes the stationary state of the quantum system. The scheme requires neither the preparation of definite initial states nor precise control of system parameters and preparation time.

© 2012 Optical Society of America

**OCIS Codes**

(270.5580) Quantum optics : Quantum electrodynamics

(270.5585) Quantum optics : Quantum information and processing

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: February 22, 2012

Revised Manuscript: April 1, 2012

Manuscript Accepted: April 16, 2012

Published: June 1, 2012

**Citation**

Xin-Yu Chen, Li-Tuo Shen, Zhen-Biao Yang, Huai-Zhi Wu, and Mei-Feng Chen, "Engineering W-type steady states for three atoms via dissipation in an optical cavity," J. Opt. Soc. Am. B **29**, 1535-1540 (2012)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-6-1535

Sort: Year | Journal | Reset

### References

- A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
- C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
- C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
- S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000). [CrossRef]
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
- M. J. Kastoryano, F. Reiter, and A. S. Sørensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011). [CrossRef]
- F. Reiter, M. J. Kastoryano, and A. S. Sørensen, “Entangled steady-states of two atoms in an optical cavity by engineered decay” (2011), http://arxiv.org/abs/1110.1024 .
- F. Reiter, and A. S. Sørensen, “Effective operator formalism for open quantum systems,” Phys. Rev. A 85, 032111 (2012). [CrossRef]
- J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, “Cooling atom-cavity systems into entangled states,” Phys. Rev. A 84, 022316 (2011). [CrossRef]
- E. D. Valle, “Steady-state entanglement of two coupled qubits,” J. Opt. Soc. Am. B 28, 228–235 (2011). [CrossRef]
- X. T. Wang, and S. G. Schirmer, “Generating maximal entanglement between non-interacting atoms by collective decay and symmetry breaking,” http://arxiv.org/abs/1005.2114 .
- L. Memarzadeh, and S. Mancini, “Stationary entanglement achievable by environment-induced chain links,” Phys. Rev. A 83, 042329 (2011). [CrossRef]
- K. G. H. Vollbrecht, C. A. Muschik, and J. I. Cirac, “Entanglement distillation by dissipation and continuous quantum repeaters,” Phys. Rev. Lett. 107, 120502 (2011). [CrossRef]
- A. F. Alharbi, and Z. Ficek, “Deterministic creation of stationary entangled states by dissipation,” Phys. Rev. A 82, 054103 (2010). [CrossRef]
- L. T. Shen, X.-Y. Chen, Z.-B. Yang, H.-Z. Wu, and S.-B. Zheng, “Steady-state entanglement for distant atoms by dissipation in coupled cavities,” Phys. Rev. A 84, 064302 (2011). [CrossRef]
- J. Cho, S. Bose, and M. S. Kim, “Optical pumping into many-body entanglement,” Phys. Rev. Lett. 106, 020504 (2011). [CrossRef]
- H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011). [CrossRef]
- B. S. Shi, and A. Tomita, “Teleportation of an unknown state by W state,” Phys. Lett. A 296, 161–164 (2002). [CrossRef]
- V. N. Gorbachev, A. I. Trubilko, A. A. Rodichkina, and A. I. Zhiliba, “Can the states of the W-class be suitable for teleportation?” Phys. Lett. A 314, 267–271 (2003). [CrossRef]
- D. Bruss, D. P. DiVincenzo, A. Ekert, C. A. Fuchs, C. Machiavello, and J. A. Smolin, “Optimal universal and state-dependent quantum cloning,” Phys. Rev. A 57, 2368–2378 (1998). [CrossRef]
- M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004). [CrossRef]
- C. F. Roos, M. Riebe, H. Häffner, W. Hänsel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and measurement of three-qubit entangled states,” Science 304, 1478–1480 (2004). [CrossRef]
- M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, “Generation of three-qubit entangled states using superconducting phase qubits,” Nature 467, 570–573 (2010). [CrossRef]
- W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000). [CrossRef]
- X. B. Zou, K. Pahlke, and W. Mathis, “Quantum entanglement of four distant atoms trapped in different optical cavities,” Phys. Rev. A 69, 052314 (2004). [CrossRef]
- G. C. Guo, and Y. S. Zhang, “Scheme for preparation of the W state via cavity quantum electrodynamics,” Phys. Rev. A 65, 054302 (2002). [CrossRef]
- S. B. Zheng, “Scalable generation of multi-atom W states with a single resonant interaction,” J. Opt. B 7, 10–13 (2005). [CrossRef]
- X. L. Zhang, K. L. Gao, and M. Feng, “Preparation of cluster states and W states with superconducting quantum-interference-device qubits in cavity QED,” Phys. Rev. A 74, 024303 (2006). [CrossRef]
- R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble, “Trapped atoms in cavity QED: coupling quantized light and matter,” J. Phys. B 38, S551–S565 (2005). [CrossRef]
- A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity,” Phys. Rev. Lett. 97, 083602 (2006). [CrossRef]
- A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 203602 (2008). [CrossRef]
- A. S. Sørensen, and K. Mølmer, “Measurement induced entanglement and quantum computation with atoms in optical cavities,” Phys. Rev. Lett. 91, 097905 (2003). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.