OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1541–1550

Polarization-resolved four-wave mixing microscopy for structural imaging in thick tissues

Fabiana Munhoz, Hervé Rigneault, and Sophie Brasselet  »View Author Affiliations

JOSA B, Vol. 29, Issue 6, pp. 1541-1550 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (895 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a polarimetric analysis of the four-wave mixing (FWM) signal emitted by thick tissues, in order to extract structural information on molecular order and orientation. A careful analysis of the polarization distortions introduced by the birefringence of the sample is conducted for the proper interpretation of the results. FWM, compared to other well-known nonlinear optical methods such as second-harmonic generation, gives access to additional information on the symmetry of the molecular distribution. Furthermore, it brings the advantage of being generated in any kind of sample, even when centrosymmetry is present. The model developed here is applied to thick rat-tail tendon samples, composed essentially of collagen fibers. We show that, once the birefringence of the sample is completely characterized, it is possible to retrieve the even-order components of the molecular orientational distribution up to the fourth order of symmetry.

© 2012 Optical Society of America

OCIS Codes
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Nonlinear Optics

Original Manuscript: March 6, 2012
Manuscript Accepted: April 12, 2012
Published: June 1, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics
June 27, 2012 Spotlight on Optics

Fabiana Munhoz, Hervé Rigneault, and Sophie Brasselet, "Polarization-resolved four-wave mixing microscopy for structural imaging in thick tissues," J. Opt. Soc. Am. B 29, 1541-1550 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Florsheimer, M. Bosch, C. Brillert, M. Wierschem, and H. Fuchs, “Second-harmonic imaging of surface order and symmetry,” Thin Solid Films 327–329, 241–246 (1998). [CrossRef]
  2. C. Anceau, S. Brasselet, and J. Zyss, “Local orientational distribution of molecular monolayers probed by nonlinear microscopy,” Chem. Phys. Lett. 411, 98–102 (2005). [CrossRef]
  3. S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett. 92, 207401 (2004). [CrossRef]
  4. I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50, 693–712 (1986). [CrossRef]
  5. P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82, 3330–3342 (2002). [CrossRef]
  6. P. Stoller, B.-M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second-harmonic imaging of rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2002). [CrossRef]
  7. G. Cox, E. Kable, A. Jones, I. Fraser, F. Manconi, and M. D. Gorrell, “3-Dimensional imaging of collagen using second harmonic generation,” J. Struct. Biol. 141, 53–62 (2003). [CrossRef]
  8. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88, 1377–1386 (2005). [CrossRef]
  9. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “3-Dimesional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82, 493–508 (2002). [CrossRef]
  10. M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. Fink, H. A. Rainer, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9, 882–892 (2004). [CrossRef]
  11. T. Boulesteix, E. Beaurepaire, M.-P. Sauviat, and M.-C. Schanne-Klein, “Second-harmonic microscopy of unstained living cardiacmyocytes: measurements of sarcomere length with 20 nm accuracy,” Opt. Lett. 29, 2031–2033 (2004). [CrossRef]
  12. A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, “Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J. 87, 2778–2786 (2004). [CrossRef]
  13. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006). [CrossRef]
  14. T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation,” Opt. Quantum Electron. 37, 1397–1408 (2005). [CrossRef]
  15. Y. Sun, W.-L. Chen, S.-J. Lin, S.-H. Jee, Y.-F. Chen, L.-C. Lin, P. T. C. So, and C.-Y. Dong, “Investigating mechanisms of collagen thermal denaturation by high resolution second-harmonic generation imaging,” Biophys. J. 91, 2620–2625 (2006). [CrossRef]
  16. F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express 15, 4054–4065 (2007). [CrossRef]
  17. C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, “Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy,” J. Microsc. 229, 32–38 (2008). [CrossRef]
  18. S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009). [CrossRef]
  19. S. Brasselet, “Polarization resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photon. 3, 205–271 (2011). [CrossRef]
  20. J. Zyss, “Octupolar organic systems in quadratic nonlinear optics: molecules and materials,” Nonlin. Opt. 1, 3–18 (1991).
  21. J. Zyss, “Molecular engineering implications of rotational invariance in quadratic nonlinear optics: from dipolar to octupolar molecules and materials,” J. Chem. Phys. 98, 6583–6599 (1993). [CrossRef]
  22. W. Min, S. Lu, M. Rueckel, G. R. Hotom, and X. S. Xie, “Near-degenerate four-wave-mixing microscopy,” Nano Lett. 9, 2423–2426 (2009). [CrossRef]
  23. D. Akimov, S. Chatzipapadopoulos, T. Meyer, N. Tarce, B. Dietzek, M. Schmitt, and J. Popp, “Different contrast information obtained from CARS and nonresonant FWM images,” J. Raman Spectrosc. 40, 941–947 (2009). [CrossRef]
  24. R. Selm, G. Krauss, A. Leitenstorfer, and A. Zumbusch, “Simultaneous second-harmonic generation, third-harmonic generation, and four-wave mixing microscopy with single sub-8 fs laser pulses,” Appl. Phys. Lett. 99, 181124 (2011). [CrossRef]
  25. P. Mahou, N. Olivier, G. Labroille, L. Duloquin, J.-M. Sintes, N. Peyriéras, R. Legouis, D. Débarre, and E. Beaurepaire, “Combined third-harmonic generation and four-wave mixing microscopy of tissues and embryos,” Biomed. Opt. Express 2, 2837–2849 (2011). [CrossRef]
  26. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997). [CrossRef]
  27. J. A. Squier, M. Müller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1998). [CrossRef]
  28. D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third harmonic generation microscopy,” Nat. Meth. 3, 47–53 (2006). [CrossRef]
  29. D. Aït-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, and S. Brasselet, “Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging,” Opt. Express 18, 14859–14870 (2010). [CrossRef]
  30. I. Gusachenko, G. Latour, and M.-C. Schanne-Klein, “Polarization-resolved second harmonic microscopy in anisotropic thick tissues,” Opt. Express 18, 19339–19352 (2010). [CrossRef]
  31. F. Munhoz, H. Rigneault, and S. Brasselet, “High order symmetry structural properties of vibrational resonances using multiple-field polarization coherent anti-Stokes Raman spectroscopy microscopy,” Phys. Rev. Lett. 105, 123903 (2010). [CrossRef]
  32. I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum frequency vibrational spectroscopy: the molecular origins of the optical second-order nonlinearity of collagen,” Biophys. J. 93, 4433–4444 (2007). [CrossRef]
  33. M. G. Kuzyk, K. D. Singer, H. E. Zahn, and L. A. King, “Second-order nonlinear-optical tensor properties of poled films under stress,” J. Opt. Soc. Am. B 6, 742–752 (1989). [CrossRef]
  34. M. Gurp, “The use of rotation matrices in the mathematical description of molecular orientations in polymers,” Colloid Polym. Sci. 273, 607–625 (1995). [CrossRef]
  35. P. Schön, M. Behrndt, D. Ait-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging,” Phys. Rev. A 81, 013809 (2010). [CrossRef]
  36. P. Schön, F. Munhoz, A. Gasecka, S. Brustlein, and S. Brasselet, “Polarization distortion effects in polarimetric two-photon microscopy,” Opt. Express 16, 20891–20901 (2008). [CrossRef]
  37. F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited