OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1563–1568

Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber

M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. St. J. Russell  »View Author Affiliations

JOSA B, Vol. 29, Issue 7, pp. 1563-1568 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (791 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Stimulated Raman scattering is investigated in a slightly multimode gas-filled hollow-core photonic crystal fiber. Although, second-order Stokes light appears in the fundamental mode below a certain threshold energy, it is observed to switch to a two-lobed higher order mode above this threshold. Conversion to the higher order mode is made possible by the creation of a two-lobed moving coherence wave in the gas that provides both phase-matching and a strong intermodal pump-Stokes overlap. A theoretical model is developed, based on this physical interpretation that agrees quantitatively with the experimental results. The results suggest new opportunities for all-fiber gas-based nonlinear processes requiring phase-matching, such as coherent anti-Stokes Raman scattering, as well as providing a means (for example) of efficiently converting light from a higher order pump mode to a fundamental Stokes mode.

© 2012 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Nonlinear Optics for Functional Devices and Applications

Original Manuscript: January 12, 2012
Manuscript Accepted: April 16, 2012
Published: June 11, 2012

M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. St. J. Russell, "Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," J. Opt. Soc. Am. B 29, 1563-1568 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. C. Eckbreth, “BOXCARS: Crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423(1978). [CrossRef]
  2. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).
  3. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006). [CrossRef]
  4. F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87 (2011). [CrossRef]
  5. F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004). [CrossRef]
  6. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007). [CrossRef]
  7. A. Nazarkin, A. Abdolvand, A. V. Chugreev, and P. St. J. Russell, “Direct observation of self-similarity in evolution of transient stimulated Raman scattering in gas-filled photonic crystal fibers,” Phys. Rev. Lett. 105, 173902 (2010). [CrossRef]
  8. A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, “Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers,” Phys. Rev. Lett. 103, 183902 (2009). [CrossRef]
  9. A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber,” Phys. Rev. A 70, 045802 (2004). [CrossRef]
  10. N. B. Delone and V. P. Krainov, Fundamentals of Nonlinear Optics of Atomic Gases (Wiley, 1988).
  11. A. Nazarkin, A. Abdolvand, and P. St. J. Russell, “Optimizing anti-Stokes Raman scattering in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A 79, 031805 (2009). [CrossRef]
  12. Z. W. Barber, C. Renner, R. R. Reibel, S. S. Wagemann, W. R. Babbitt, and P. A. Roos, “Conditions for highly efficient anti-Stokes conversion in gas-filled hollow core waveguides,” Opt. Express 18, 7131–7137 (2010). [CrossRef]
  13. T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes inhollow-core photonic crystal fibers,” Opt. Express 16, 17972–17981 (2008). [CrossRef]
  14. M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980 (1981). [CrossRef]
  15. M. G. Raymer and I. A. Walmsley, “III The quantum coherence properties of stimulated Raman scattering,” in Progress in OpticsE. Wolf, ed., (Elsevier, 1990), Vol. 28, pp. 181–270.
  16. F. Couny, O. Carraz, and F. Benabid, “Control of transient regime of stimulated Raman scattering using hollow-core PCF,” J. Opt. Soc. Am. B 26, 1209–1215 (2009). [CrossRef]
  17. X. Michaut, R. Saint-Loup, H. Berger, M. L. Dubernet, P. Joubert, and J. Bonamy, “Investigations of pure rotational transitions of H2 self-perturbed and perturbed by Measurement He. I., modeling, and quantum calculations,” J. Chem. Phys. 109, 951 (1998). [CrossRef]
  18. W. Kolos and L. Wolniewicz, “Polarizability of the hydrogen molecule,” J. Chem. Phys. 46, 1426 (1967). [CrossRef]
  19. D. A. Long, The Raman Effect (John Wiley, 2002).
  20. D. R. Schultz and M. R. Strayer, “8 computational techniques” in Springer Handbook of Atomic, Molecular, and Optical Physics, G. Drake, ed. (Springer, 2006).
  21. G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71, 195108 (2005). [CrossRef]
  22. N. Y. Joly, J. Nold, W. Chang, P. Hoelzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited