OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1569–1579

Yb3+ ion concentration effects on 1μm emission in tellurite glass

Sathravada Balaji, Atul D. Sontakke, and K. Annapurna  »View Author Affiliations


JOSA B, Vol. 29, Issue 7, pp. 1569-1579 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001569


View Full Text Article

Enhanced HTML    Acrobat PDF (1408 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effects of Yb3+ ion concentration on physical, optical, and spectroscopic properties have been studied in a low phonon (590cm1) barium-lanthanum-tellurite glass. Due to the unfeasibility of Judd-Ofelt theory Yb3+-doped systems, the oscillator strength of absorption transition, F27/2F5/22 has been evaluated by using the Smakula equation. The nature of emission from F25/2F7/22 transition of Yb3+ ions is described theoretically by using a rate equation in comparison with experimental results. By applying reciprocity (RM) and Fuchtbauer-Ladenburg methods on emission spectra as well as the excitation random walk model on measured fluorescence lifetimes, the radiation trapping and concentration quenching effects have been discussed. Considering all the spectroscopic and laser performance parameters, an optimum Yb-ion doping concentration (YT1) has been determined, and the gain measurements performed on the sample revealed a flat gain over a broad wavelength range could be achieved even with a low (20%) excitation population density. A comparative study with other hosts revealed the potentiality of the present glass for 1 micron emission.

© 2012 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.4670) Materials : Optical materials
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Materials

History
Original Manuscript: February 24, 2012
Revised Manuscript: April 20, 2012
Manuscript Accepted: April 21, 2012
Published: June 11, 2012

Citation
Sathravada Balaji, Atul D. Sontakke, and K. Annapurna, "Yb3+ ion concentration effects on ∼1  μm emission in tellurite glass," J. Opt. Soc. Am. B 29, 1569-1579 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-7-1569


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Schulz, R. Riedel, A. Willner, S. Dusterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Pulsed operation of a high average power Yb: YAG thin-disk multipass amplifier,” Opt. Exp. 20, 5038–5043 (2012). [CrossRef]
  2. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2,” Opt. Lett. 22, 1317–1319 (1997). [CrossRef]
  3. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb: YAG ceramic lasers,” Opt. Lett. 32, 1890–1892 (2007). [CrossRef]
  4. H. W. Etzel, H. W. Gandy, and R. J. Ginther, “Stimulated emission of infrared radiation from Ytterbium-activated silica glass,” Appl. Opt. 1, 534–536 (1962). [CrossRef]
  5. M. J. Weber, J. E. Lynch, D. H. Blackburn, and D. J. Cronin, “Dependence of the stimulated emission cross section of Yb3+on host glass composition,” IEEE J. Quantum Electron. 19, 1600–1608 (1983). [CrossRef]
  6. X. Zou and H. Toratani, “Evaluation of spectroscopic properties of Yb3+ doped glasses,” Phys. Rev. B 52, 15889–15897(1995). [CrossRef]
  7. M. J. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. (Amsterdam) 3, 187–203 (1994). [CrossRef]
  8. X. Feng, C. Qi, F. Lin, and H. Hu, “Tungsten-tellurite glass: a new candidate medium for Yb3+ doping,” J. Non-Cryst. Solid 256–257, 372–377 (1999). [CrossRef]
  9. G. Wang, S. Xu, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Thermal stability, spectra and laser properties of Yb: lead–zinc–telluride oxide glasses,” J. Non-Cryst. Solid 336, 102–106 (2004). [CrossRef]
  10. L. C. Courrol, L. R. P. Kassab, A. S. Morais, C. M. S. Mendes, L. Gomes, N. U. Wetter, N. D. Vieira, F. C. Cassanjes, Y. Messaddeq, and S. J. L. Ribeiro, “Study of the most suitable new glass laser to incorporate ytterbium: alkali niobium tellurite, lead fluoroborate or heavy metal oxide,” J. Lumin. 102–103, 106–111 (2003). [CrossRef]
  11. J. Liao, Y. Lin, Y. Chen, Z. Luo, En. Ma, X. Gong, Q. Tan, and Y. Huang, “Radiative-trapping and fluorescence-concentration quenching effects of Yb: YAl3(BO3)4 crystals,” J. Opt. Soc. Am. B 23, 2572–2580 (2006). [CrossRef]
  12. V. Petit, P. Camy, J.-L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+: CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008). [CrossRef]
  13. E. A. Davis and N. F. Mott, “Conduction in non-crystalline systems V. conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philos. Mag. 22, 903–922 (1970). [CrossRef]
  14. V. Dimitrov and T. Komatsu, “Classification of simple oxide glasses: a polarizability approach,” J. Solid State Chem. 178, 831–846 (2005). [CrossRef]
  15. V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides. I,” J. Appl. Phys. 79, 1736–1740 (1996). [CrossRef]
  16. M. Abdel-Baki and F. El-Diasty, “Optical properties of oxide glasses containing transition metals: case of titanium and chromium containing glasses,” Curr. Opin. Solid State Mater. Sci. 10, 217–229 (2006). [CrossRef]
  17. X. Zhao, X. Wang, H. Lin, and Z. Wang, “Electronic polarizability and optical basicity of lanthanide oxides,” Physica B 392, 132–136 (2007). [CrossRef]
  18. Q. Zhang, J. Ding, B. Tang, J. Cheng, Y. Qiao, Q. Zhou, J. Qiu, Q. Chen, and D. Chen, “Optical properties of Yb3+ ions in SiO2─Al2O3─CaF2 glasses,” J. Phys. D 42, 235405 (2009). [CrossRef]
  19. K. Patek, Glass Lasers (Butterworth, 1970).
  20. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of trivalent lanthanides and actinides in solution. II,” J. Chem. Phys. 49, 4412–4423 (1968). [CrossRef]
  21. D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Radiation effects and optical transitions in Yb3+ doped Barium-Thorium fluoride glass,” J. Non-Cryst. Solids 88, 66–82(1986). [CrossRef]
  22. N. Dai, L. Hu, and P. Lu, “Effects of Yb ion concentration on the spectral properties of lead silica glasses,” Opt. Commun. 253, 151–155 (2005). [CrossRef]
  23. P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354, 4760–4764 (2008). [CrossRef]
  24. F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis Yb3+, Er3+ and Ho3+ doped Y2O3,” Opt. Mater. (Amsterdam) 24, 103–109 (2003). [CrossRef]
  25. M. J. V. Bell, W. G. Quirino, S. L. Oliveira, D. F. Sousa, and L. A. O. Nunes, “Cooperative luminescence in Yb3+-doped phosphate glasses,” J. Phys. D: Conden. Matter. 15, 4877–4887 (2003). [CrossRef]
  26. L. R. P. Kassab, M. E. Fukumoto, V. D. D. Cacho, N. U. Wetter, and N. I. Morimoto, “Spectroscopic properties of Yb3+ doped PbO─Bi2O3─Ga2O3 glasses for IR laser applications,” Opt. Mater. (Amsterdam) 27, 1576–1582 (2005). [CrossRef]
  27. L. Zang and H. Hu, “Evaluation of spectroscopic properties of Yb3+ in tetraphosphate glass,” J. Non-Cryst. Solids 292, 108–114 (2001). [CrossRef]
  28. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964). [CrossRef]
  29. B. F. Aull and H. P. Jenssen, “Vibronic interaction in Nd: YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930 (1982). [CrossRef]
  30. S. Dai, J. Yang, L. Wen, L. Hu, and Z. Jiang, “Effect of radiation trapping on measurement of the spectroscopic properties of Yb3+: phosphate glasses,” J. Lumin. 104, 55–63 (2003). [CrossRef]
  31. F. Spitzer, Principles of Random Walks (Van Nostrand, 1964).
  32. S. Guy, “Modelization of lifetime measurement in the presence of radiation trapping in solid-state materials,” Phys. Rev. B 73, 144101–144108 (2006). [CrossRef]
  33. A. Brenier, “Excited-state dynamics including radiative diffusion in quasi-three level laser crystals: application to Yb-doped Y3Al5O12,” J. Opt. Soc. Am. B 23, 2209–2216 (2006). [CrossRef]
  34. M. Eichhorn, “Fluorescence reabsorption and its effects on the local effective excitation lifetime,” Appl. Phys. B 96, 369–377 (2009). [CrossRef]
  35. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited