OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1580–1583

Reference lines in the optogalvanic spectra of uranium and thorium in the wavelength range 422 to 462 nm

W. DeGraffenreid, Sarah C. Campbell, and Craig J. Sansonetti  »View Author Affiliations


JOSA B, Vol. 29, Issue 7, pp. 1580-1583 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001580


View Full Text Article

Enhanced HTML    Acrobat PDF (258 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The spectra of uranium and thorium are convenient sources of reference lines for wavelength calibration at the level of a few parts in 10 8 . We observed these spectra by laser optogalvanic spectroscopy in commercial hollow-cathode lamps using a single-frequency cw dye laser operating over the wavelength range 422 to 462 nm. Ten uranium and eight thorium lines were measured with an estimated uncertainty of 0.0003 cm 1 by using our Fabry–Perot wavemeter. The results are compared to previous measurements of these lines and are found to be in good agreement with, and 1 order of magnitude more accurate than, values determined by Fourier-transform spectroscopy.

OCIS Codes
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6440) Spectroscopy : Spectroscopy, optogalvanic

ToC Category:
Spectroscopy

History
Original Manuscript: April 9, 2012
Manuscript Accepted: April 13, 2012
Published: June 11, 2012

Citation
W. DeGraffenreid, Sarah C. Campbell, and Craig J. Sansonetti, "Reference lines in the optogalvanic spectra of uranium and thorium in the wavelength range 422 to 462 nm," J. Opt. Soc. Am. B 29, 1580-1583 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-7-1580


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. S. King, P. K. Schenck, K. C. Smyth, and J. C. Travis, “Direct calibration of laser wavelength and bandwidth using the optogalvanic effect in hollow cathode lamps,” Appl. Opt. 16, 2617–2619 (1977). [CrossRef]
  2. C. J. Sansonetti and K.-H. Weber, “Reference lines for dye-laser wave-number calibration in the optogalvanic spectra of uranium and thorium,” J. Opt. Soc. Am. B 1, 361–365 (1984). [CrossRef]
  3. W. DeGraffenreid, and C. J. Sansonetti, “Reference lines in the optogalvanic spectra of uranium and thorium over the wavelength range 694–755 nm,” J. Opt. Soc. Am. B 19, 1711–1715 (2002). [CrossRef]
  4. J. Cariou and P. Luc, Atlas du Spectre d’Absorption de la Molécule Tellure (Laboratoire Aimé-Cotton, CNRS II, 1980).
  5. J. D. Gillaspy and C. J. Sansonetti, “Absolute wavelength determinations in molecular tellurium: new reference lines for precision laser spectroscopy,” J. Opt. Soc. Am. B 8, 2414–2419 (1991). [CrossRef]
  6. S. L. Redman, J. E. Lawler, G. Nave, L. W. Ramsey, and S. Mahadevan, “The infrared spectrum of uranium hollow cathode lamps from 850 nm to 4000 nm: wavenumbers and line identifications from Fourier transform spectra,” Astrophys. J. Suppl. Ser. 195, 24 (2011). [CrossRef]
  7. M. T. Murphy, P. Tzanavaris, J. K. Webb, and C. Lovis, “Selection of ThAr lines for wavelength calibration of echelle spectra and implications for variations in the fine-structure constant,” Mon. Not. R. Astron. Soc. 378, 221–230 (2007). [CrossRef]
  8. C. Lovis and F. Pepe, “A new list of thorium and argon spectral lines in the visible,” Astron. Astrophys. 468, 1115–1121 (2007). [CrossRef]
  9. F. Kerber, G. Nave, and C. J. Sansonetti, “The spectrum of Th-Ar hollow cathode lamps in the 691–5804 nm region: establishing wavelength standards for calibration of infrared spectrographs,” Astrophys. J. Suppl. Ser. 178, 374–381 (2008). [CrossRef]
  10. Manufactured by Photron Pty, Ltd., Arlington Heights, Ill. Identification of this commercial equipment is made to specify adequately the experiment described in this paper. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment identified is necessarily the best available for the purpose.
  11. C. J. Sansonetti, “Precise laser wavelength measurements: what can we learn from classical spectroscopy?,” in Advances in Laser Science—IV, J. L. Gole, D. F. Heller, M. Lapp, and W. C. Stwalley, eds. (American Institute of Physics, 1988), pp. 548–553.
  12. T. J. Scholl, S. J. Rehse, R. A. Holt, and S. D. Rosner, “Absolute wave-number measurements in Te1302: reference lines spanning the 420.9–464.6 nm region,” J. Opt. Soc. Am. B 22, 1128–1133 (2005). [CrossRef]
  13. B. A. Palmer, R. A. Keller, and R. Engleman, “An atlas of uranium emission intensities in a hollow cathode discharge,” LASL Rep. LA-8251-MS (Los Alamos Scientific Laboratory, Los Alamos, N. Mex., 1980).
  14. B. A. Palmer and R. Engleman, “Atlas of the thorium spectrum,” LANL Rep. LA-9615 (Los Alamos National Laboratory, Los Alamos, N. Mex., 1983).
  15. T. A. Littlefield and A. Wood, “Interferometric wavelengths of thorium lines between 9050 and 2566 Å,” J. Opt. Soc. Am. 55, 1509–1516 (1965). [CrossRef]
  16. D. Goorvitch, F. P. J. Valero, and A. L. Clúa, “Interferometrically measured thorium lines between 2747 and 4572 Å,” J. Opt. Soc. Am. 59, 971–975 (1969). [CrossRef]
  17. W. F. Meggers and R. W. Stanley, “More wavelengths from thorium lamps,” J. Res. Natl. Bur. Std. Sect. A 69, 109–118 (1965).
  18. A. Giacchetti, M. Gallardo, M. J. Garavaglia, Z. Gonzalez, F. P. J. Valero, and E. Zakowicz, “Interferometrically measured thorium wavelengths,” J. Opt. Soc. Am. 54, 957–959 (1964). [CrossRef]
  19. A. Giacchetti, R. W. Stanley, and R. Zalubas, “Proposed secondary-standard wavelengths in the spectrum of thorium,” J. Opt. Soc. Am. 60, 474–489 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited