OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1584–1588

Generation of two-atom Knill–Laflamme–Milburn states with cavity quantum electrodynamics

Liu-Yong Cheng, Hong-Fu Wang, Shou Zhang, and Kyu-Hwang Yeon  »View Author Affiliations


JOSA B, Vol. 29, Issue 7, pp. 1584-1588 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001584


View Full Text Article

Enhanced HTML    Acrobat PDF (248 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper proposes two schemes to generate the two-atom Knill–Laflamme–Milburn states with a strong coupling cavity-fiber system and the cavity-assisted single-photon input-output process, respectively. The significant logical operations for the generation are constructed accurately. The resonant interactions between atoms and photons in the two schemes imply a relatively short operation time, and the probabilities of successful generation are near to unity under the current experimental conditions.

© 2012 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: January 10, 2012
Manuscript Accepted: May 7, 2012
Published: June 11, 2012

Citation
Liu-Yong Cheng, Hong-Fu Wang, Shou Zhang, and Kyu-Hwang Yeon, "Generation of two-atom Knill–Laflamme–Milburn states with cavity quantum electrodynamics," J. Opt. Soc. Am. B 29, 1584-1588 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-7-1584


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. L. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  3. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  4. S.-B. Zheng and G.-C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000). [CrossRef]
  5. G. Vidal, “Efficient classical simulation of slightly entangled quantum computations,” Phys. Rev. Lett. 91, 147902 (2003). [CrossRef]
  6. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009). [CrossRef]
  7. C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000). [CrossRef]
  8. X.-B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity QED,” Phys. Rev. A 67, 044301 (2003). [CrossRef]
  9. A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002). [CrossRef]
  10. H.-F. Wang and Shou Zhang, “Linear optical generation of multipartite entanglement with conventional photon detectors,” Phys. Rev. A 79, 042336 (2009). [CrossRef]
  11. X.-Q. Shao, L. Chen, S. Zhang, Y.-F. Zhao, and K.-H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010). [CrossRef]
  12. E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). [CrossRef]
  13. J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004). [CrossRef]
  14. S. Popescu, “Knill-Laflamme-Milburn quantum computation with bosonic atoms,” Phys. Rev. Lett. 99, 130503 (2007). [CrossRef]
  15. A. Grudka and J. Modalwska, “Optimal state in the Knill-Laflamme-Milburn scheme of linear optical teleportation,” Phys. Rev. A 77, 014301 (2008). [CrossRef]
  16. K. Lemr and J. Fiurášek, “Preparation of entangled states of two photons in several spatial modes,” Phys. Rev. A 77, 023802 (2008). [CrossRef]
  17. J. Modlawska and A. Grudka, “Adaptive quantum teleportation,” Phys. Rev. A 79, 064302 (2009). [CrossRef]
  18. K. Lemr, A. Černoch, J. Soubusta, and J. Fiuášek, “Experimental preparation of two-photon Knill-Laflamme-Milburn states,” Phys. Rev. A 81, 012321 (2010). [CrossRef]
  19. H. Walther, B. T. H. Varcoe, B. G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006). [CrossRef]
  20. J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002). [CrossRef]
  21. K. Lemr, “Preparation of Knill-Laflamme-Milburn states using a tunable controlled phase gate,” J. Phys. B 44, 195501 (2011). [CrossRef]
  22. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006). [CrossRef]
  23. Z.-Q. Yin and F.-L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007). [CrossRef]
  24. P.-B. Li and F.-L. Li, “Deterministic generation of multiparticle entanglement in a coupled cavity-fiber system,” Opt. Express 19, 1207–1216 (2011). [CrossRef]
  25. Z.-B. Yang, H.-Z. Wu, W.-J. Su, and S.-B. Zheng, “Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces,” Phys. Rev. A 80, 012305 (2009). [CrossRef]
  26. J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, “Cavity QED with optically transported atoms,” Phys. Rev. A 69, 051804(R) (2004). [CrossRef]
  27. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstyle dynamically regulated by one atom,” Science 319, 1062–1065 (2008). [CrossRef]
  28. J.-H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009). [CrossRef]
  29. Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009). [CrossRef]
  30. F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010). [CrossRef]
  31. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).
  32. M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253–255 (2007). [CrossRef]
  33. A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett. 89, 103001 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited