OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1589–1598

Modified annular photonic crystals with enhanced dispersion relations: polarization insensitive self-collimation and nanophotonic wire waveguide designs

M. Turduev, I. H. Giden, and H. Kurt  »View Author Affiliations


JOSA B, Vol. 29, Issue 7, pp. 1589-1598 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001589


View Full Text Article

Enhanced HTML    Acrobat PDF (2199 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel (to our best knowledge) type of photonic crystal (PC) structure called modified annular PC (MAPC) that is composed of dielectric rods with off-centered air holes is thoroughly studied. The plane wave expansion method is applied for spectral analysis. A complete photonic bandgap region with a considerable value of gap width Δω/ω=7.06% is achieved by optimizing the structural parameters of the proposed periodic medium. By introducing geometrical asymmetry to the primitive cell of PC, we engineer the dispersion properties of the proposed photonic structure such that conventional equifrequency contours for the second band can be transformed into tilted rectangular shapes. This feature enables us to demonstrate the polarization insensitive tilted self-collimation effect. A hybrid structure composed of dielectric nanowire and MAPCs is offered to obtain a high degree of polarization independent guiding of light. The two-dimensional finite-difference time-domain method is carried out to verify the light guiding efficiencies. Polarization insensitive optical functionalities achieved by MAPC structure can be deployed in integrated optical circuits.

© 2012 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.1360) Optical devices : Beam splitters
(230.3120) Optical devices : Integrated optics devices
(230.5440) Optical devices : Polarization-selective devices
(160.5293) Materials : Photonic bandgap materials
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Optical Devices

History
Original Manuscript: January 17, 2012
Revised Manuscript: April 1, 2012
Manuscript Accepted: April 27, 2012
Published: June 11, 2012

Citation
M. Turduev, I. H. Giden, and H. Kurt, "Modified annular photonic crystals with enhanced dispersion relations: polarization insensitive self-collimation and nanophotonic wire waveguide designs," J. Opt. Soc. Am. B 29, 1589-1598 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-7-1589


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]
  2. S. John, “Strong localization of photons in certain dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef]
  3. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990). [CrossRef]
  4. Z. Zhang and S. Satpathy, “Electromagnetic wave propagation in periodic structures: Bloch wave solution of the Maxwell’s equations,” Phys. Rev. Lett. 65, 2650–2653 (1990). [CrossRef]
  5. E. Yablonovitch, “Photonic band-gap crystals,” J. Phys. 5, 2443–2460 (1993). [CrossRef]
  6. Y. F. Chau, T. J. Yang, and W. D. Lee, “Coupling technique for efficient interfacing between silica waveguides and planar photonic crystal circuits,” Appl. Opt. 43, 6656–6663 (2004). [CrossRef]
  7. H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron. 43, 78–84 (2007). [CrossRef]
  8. M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402–1411 (2000). [CrossRef]
  9. W. D. Zhou, J. Sabarinathan, P. Bhattacharya, B. Kochman, E. Berg, P. C. Yu, and S. Pang, “Characteristics of a photonic bandgap single defect microcavity electroluminescent device,” IEEE J. Quantum Electron. 37, 1153–1160 (2001). [CrossRef]
  10. B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300, 1537 (2003). [CrossRef]
  11. X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett. 85, 3657–3659 (2004). [CrossRef]
  12. M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682 (2002). [CrossRef]
  13. H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, Y. H. Lee, and J. S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032–3034 (2001). [CrossRef]
  14. P. R. Villeneuve and M. Piche, “Photonic band gaps in two dimensional square and hexagonal lattices,” Phys. Rev. B 46, 4969–4972 (1992). [CrossRef]
  15. C. M. Anderson and K. P. Giapis, “Larger two-dimensional photonic band gaps,” Phys. Rev. Lett. 77, 2949–2952 (1996). [CrossRef]
  16. F. Wen, S. David, X. Checoury, M. El Kurdi, and P. Boucaud, “Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations,” Opt. Express 16, 12278–12289 (2008). [CrossRef]
  17. W. Kuang, Z. Hou, Y. Liu, and H. Li, “The bandgap of a photonic crystal with triangular dielectric rods in a honeycomb lattice,” J. Opt. A 7, 525–528 (2005). [CrossRef]
  18. Y. F. Chau, F. L. Wu, Z. H. Jiang, and H. Y. Li, “Evolution of the complete photonic bandgap of two-dimensional photonic crystal,” Opt. Express 19, 4862–4867 (2011). [CrossRef]
  19. H. F. Ho, Y. F. Chau, H. Y. Yeh, and F. L. Wu, “Complete band gap arising from the effects of hollow, veins, and intersecting veins in a square lattice of square dielectric rods photonic crystal,” Appl. Phys. Lett. 98, 263115–263118 (2011). [CrossRef]
  20. Y. R. Zhang, L. K. Kong, Z. H. Feng, and Z. Q. Zheng, “PBG structures of novel two-dimensional annular photonic crystals with triangular lattice,” Optoelectron. Lett. 6, 281–283 (2010). [CrossRef]
  21. J. Hou, D. S. Citrin, H. Wu, D. Gao, and Z. Zhou, “Enhanced bandgap in annular photonic-crystal silicon-on-insulator asymmetric slabs,” Opt. Lett. 36, 2263–2265 (2011). [CrossRef]
  22. R. P. Zaccaria, P. Verma, S. Kawaguchi, S. Shoji, and S. Kawata, “Manipulating full photonic band gap in two dimensional birefringent photonic crystals,” Opt. Express 16, 14812–14820 (2008). [CrossRef]
  23. Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81, 2574–2577 (1998). [CrossRef]
  24. P. Shi, K. Huang, X. L. Kang, and Y. P. Li, “Creation of large band gap with anisotropic annular photonic crystal slab structure,” Opt. Express 18, 5221–5228 (2010). [CrossRef]
  25. B. Rezaei and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282, 2861–2869 (2009). [CrossRef]
  26. T. F. Khalkhali, B. Rezaei, and M. Kalafi, “Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals,” Opt. Commun. 284, 3315–3322 (2011). [CrossRef]
  27. S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett. 77, 3490–3492 (2000). [CrossRef]
  28. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000). [CrossRef]
  29. H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13, 10316–10326 (2005). [CrossRef]
  30. H. Kurt, R. Hao, Y. Chen, J. Feng, J. Blair, C. Summers, D. S. Citrin, and Z. Zhou, “Design of annular photonic crystal slabs,” Opt. Lett. 33, 1614–1616 (2008). [CrossRef]
  31. J. Hou, D. Gao, H. Wu, and Z. Zhou, “Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals,” Opt. Commun. 282, 3172–3176 (2009). [CrossRef]
  32. A. Cicek and B. Ulug, “Polarization-independent waveguiding with annular photonic crystals,” Opt. Express 17, 18381–18386(2009). [CrossRef]
  33. X. Shen, K. Han, X. Yang, Y. Shen, H. Li, G. Tang, and Z. Guo, “Polarization-independent self-collimating bends and beam splitters in photonic crystals,” Chin. Opt. Lett. 5, 662–664 (2007).
  34. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999). [CrossRef]
  35. J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002). [CrossRef]
  36. M. Wang, M. Yun, W. Kong, and C. Cui, “Beam splitter and beam bends based on self-collimation effect in two-dimensional photonic crystals,” J. Mod. Opt. 56, 1159–1162 (2009). [CrossRef]
  37. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32, 530–532 (2007). [CrossRef]
  38. I. H. Giden and H. Kurt, “Modified annular photonic crystals for enhanced band gap properties and isofrequency contour engineering” Appl. Opt. 51, 1287–1296 (2012). [CrossRef]
  39. S. S. Oh, S. G. Lee, J. E. Kim, and H. Y. Park, “Self-collimation phenomena of surface waves in structured perfect electric conductors and metal surfaces,” Opt. Express 15, 1205–1210 (2007). [CrossRef]
  40. S. H. Kim, T. T. Kim, S. S. Oh, J. E. Kim, H. Y. Park, and C. S. Kee, “Experimental demonstration of self-collimation of spoof surface plasmons,” Phys. Rev. B 83, 165109 (2011). [CrossRef]
  41. S. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef]
  42. A. F. Matthews, S. F. Mingaleev, and Y. S. Kivshar, “Band-gap engineering and defect modes in photonic crystals with rotated hexagonal holes,” Laser Phys. 14, 631–634 (2004).
  43. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).
  44. P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. 69, 742–756 (1979). [CrossRef]
  45. G. G. Zheng, L. X. Shi, X. Y. Li, H. L. Wang, and J. Yuan, “Optical interconnections with photonic crystal self-collimation, directional emission and co-directional coupling mechanism,” J. Phys. D 42, 115101 (2009). [CrossRef]
  46. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  47. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  48. H. Kurt, I. H. Giden, and K. Üstün, “Highly efficient and broadband light transmission in 90° nanophotonic wire waveguide bends,” J. Opt. Soc. Am. B 28, 495–501 (2011). [CrossRef]
  49. E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. Lett. 91, 023902 (2003). [CrossRef]
  50. H. Fu, Y. Chen, R. Chern, and C. Chang, “Connected hexagonal photonic crystals with largest full band gap,” Opt. Express 13, 7854–7860 (2005). [CrossRef]
  51. G. Si, A. J. Danner, S. L. Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29, 021205–021209 (2011). [CrossRef]
  52. S. Juodkazis, L. Rosa, S. Bauerdick, L. Peto, R. El-Ganainy, and S. John, “Sculpturing of photonic crystals by ion beam lithography: towards complete photonic bandgap at visible wavelengths,” Opt. Express 19, 5802–5810 (2011). [CrossRef]
  53. J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009). [CrossRef]
  54. M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004). [CrossRef]
  55. Y. Xu, S. Wang, S. Lan, X. Lin, Q. Guo, and L. Wu, “Self-collimating polarization beam splitter based on photonic crystal Mach–Zehnder interferometer,” J. Opt. Soc. Am. B 27, 1359–1363 (2010). [CrossRef]
  56. T. T. Kim, S. G. Lee, S. H. Kim, J. E. Kim, H. Y. Park, and C. S. Kee, “Ring-type Fabry–Pérot filter based on the self-collimation effect in a 2D photonic crystal,” Opt. Express 18, 17106–17113 (2010). [CrossRef]
  57. D. W. Prather, S. Shi, D. M. Pustai, A. Sharkawy, C. Chen, S. Venkataraman, J. Murakowski, and G. Schneider, “Dispersion-based optical routing in photonic crystals,” Opt. Lett. 29, 50–52 (2004). [CrossRef]
  58. D. M. Pustai, S. Shi, C. Chen, A. Sharkawy, and D. W. Prather, “Analysis of splitters for self-collimated beams in planar photonic crystals,” Opt. Express 12, 1823–1831 (2004). [CrossRef]
  59. J. M. Park, S. G. Lee, H. R. Park, and M. H. Lee, “High-efficiency polarization beam splitter based on a self-collimating photonic crystal,” J. Opt. Soc. Am. B 27, 2247–2254 (2010). [CrossRef]
  60. S. Shi, A. Sharkawy, C. Chen, D. M. Pustai, and D. W. Prather, “Dispersion-based beam splitter in photonic crystals,” Opt. Lett. 29, 617–619 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited