OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1606–1611

Second-order nonlinear frequency conversion processes in plasmonic slot waveguides

Shakeeb Bin Hasan, Carsten Rockstuhl, Thomas Pertsch, and Falk Lederer  »View Author Affiliations


JOSA B, Vol. 29, Issue 7, pp. 1606-1611 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001606


View Full Text Article

Enhanced HTML    Acrobat PDF (547 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical study on the possibilities to achieve nonlinear frequency conversion in plasmonic slot waveguides having a χ ( 2 ) nonlinear medium as its core. Second-harmonic generation is used as a referential process to discuss the possibilities in achieving strong nonlinear interactions. We show that geometrical dispersion allows for the possibility of modal phase matching without resorting to other mechanisms like birefringence phase matching or periodic poling of the nonlinear medium. We disclose that in strongly dissipative systems two effects, the damping of individual modes and the phase-matching condition, have to be carefully balanced to assure an efficient energy conversion. Besides second-harmonic generation, emphasis is put on exploring the application of potentially more importance: the parametric amplification in the waveguide with the purpose to enhance its propagation length.

© 2012 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 13, 2012
Revised Manuscript: April 15, 2012
Manuscript Accepted: April 16, 2012
Published: June 12, 2012

Citation
Shakeeb Bin Hasan, Carsten Rockstuhl, Thomas Pertsch, and Falk Lederer, "Second-order nonlinear frequency conversion processes in plasmonic slot waveguides," J. Opt. Soc. Am. B 29, 1606-1611 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-7-1606


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010). [CrossRef]
  2. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005). [CrossRef]
  3. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008). [CrossRef]
  4. N. Talebi, M. Shahabadi, W. Khunsin, and R. Vogelgesang, “Plasmonic grating as a nonlinear converter-coupler,” Opt. Express 20, 1392–1405 (2012). [CrossRef]
  5. W. Fan, S. Zhang, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Second-harmonic generation from patterned gaas inside a subwavelength metallic hole array,” Opt. Express 14, 9570–9575 (2006). [CrossRef]
  6. H. Y. Lin and Y. F. Chen, “Giant enhancement of luminescence induced by second-harmonic surface plasmon resonance,” Appl. Phys. Lett. 88, 101914 (2006). [CrossRef]
  7. K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett. 7, 254–258 (2007). [CrossRef]
  8. N. J. Borys, M. J. Walter, and J. M. Lupton, “Intermittency in second-harmonic radiation from plasmonic hot spots on rough silver films,” Phys. Rev. B 80, 161407 (2009). [CrossRef]
  9. T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106, 133901 (2011). [CrossRef]
  10. T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun 2, 333 (2011). [CrossRef]
  11. J. Mäkitalo, S. Suuriniemi, and M. Kauranen, “Boundary element method for surface nonlinear optics of nanoparticles,” Opt. Express 19, 23386–23399 (2011). [CrossRef]
  12. F. B. P. Niesler, N. Feth, S. Linden, and M. Wegener, “Second-harmonic optical spectroscopy on split-ring-resonator arrays,” Opt. Lett. 36, 1533–1535 (2011). [CrossRef]
  13. E. Feigenbaum and M. Orenstein, “Plasmon-soliton,” Opt. Lett. 32, 674–676 (2007). [CrossRef]
  14. A. Marini, D. V. Skryabin, and B. Malomed, “Stable spatial plasmon solitons in a dielectric-metal-dielectric geometry with gain and loss,” Opt. Express 19, 6616–6622 (2011). [CrossRef]
  15. A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Self-focusing and spatial plasmon-polariton solitons,” Opt. Express 17, 21732–21737 (2009). [CrossRef]
  16. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008).
  17. Z.-j. Wu, X.-k. Hu, Z.-y. Yu, W. Hu, F. Xu, and Y.-q. Lu, “Nonlinear plasmonic frequency conversion through quasiphase matching,” Phys. Rev. B 82, 155107 (2010). [CrossRef]
  18. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998). [CrossRef]
  19. A. D. Falco, C. Conti, and G. Assanto, “Quadratic phase matching in slot waveguides,” Opt. Lett. 31, 3146–3148 (2006). [CrossRef]
  20. J.-l. Kou, Q. Wang, Z.-y. Yu, F. Xu, and Y.-q. Lu, “Broadband and highly efficient quadratic interactions in double-slot lithium niobate waveguides through phase matching,” Opt. Lett. 36, 2533–2535 (2011). [CrossRef]
  21. A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, R. Iliew, R. Geiss, T. Pertsch, and Y. S. Kivshar, “Cascaded third harmonic generation in lithium niobate nanowaveguides,” Appl. Phys. Lett. 98, 231110 (2011). [CrossRef]
  22. A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Quadratic phase matching in nonlinear plasmonic nanoscale waveguides,” Opt. Express 17, 20063–20068 (2009). [CrossRef]
  23. F. F. Lu, T. Li, J. Xu, Z. D. Xie, L. Li, S. N. Zhu, and Y. Y. Zhu, “Surface plasmon polariton enhanced by optical parametric amplification in nonlinear hybrid waveguide,” Opt. Express 19, 2858–2865 (2011). [CrossRef]
  24. Z. Ruan, G. Veronis, K. L. Vodopyanov, M. M. Fejer, and S. Fan, “Enhancement of optics-to-thz conversion efficiency by metallic slot waveguides,” Opt. Express 17, 13502–13515 (2009). [CrossRef]
  25. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005). [CrossRef]
  26. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  27. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed. (Springer, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited