OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1641–1647

Interaction among plasmonic resonances in a gold film embedding a two-dimensional array of polymeric nanopillars

Silvia Giudicatti, Franco Marabelli, Andrea Valsesia, Paola Pellacani, Pascal Colpo, and Francois Rossi  »View Author Affiliations

JOSA B, Vol. 29, Issue 7, pp. 1641-1647 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1811 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nanostructured surfaces have proven to be effective in controlling the electric field distribution and triggering a series of interesting physical effects. In particular, ordered metallic lattices with a typical size of the same order of magnitude of the wavelength of the incident radiation exhibit extraordinary transmission and reflection properties and represent a sensitive tool to exploit surface plasmon resonance for sensing applications. We investigated, either by experimental structural and optical measurements or by modeling and calculations, samples consisting of a two-dimensional array of polymeric pillars embedded in a gold film. In particular, we analyzed the dependence of the plasmonic resonance on the pillar size. We showed that a peculiar interplay among localized modes and propagating surface plasmon polaritons exists for some selected conditions and affects the spectral distribution, lifetime, and field configuration of the plasmonic excitations.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

Original Manuscript: February 13, 2012
Manuscript Accepted: March 1, 2012
Published: June 13, 2012

Silvia Giudicatti, Franco Marabelli, Andrea Valsesia, Paola Pellacani, Pascal Colpo, and Francois Rossi, "Interaction among plasmonic resonances in a gold film embedding a two-dimensional array of polymeric nanopillars," J. Opt. Soc. Am. B 29, 1641-1647 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  2. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). [CrossRef]
  3. F. J. Garcia de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007). [CrossRef]
  4. J. C. Hulteen and R. P. van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13, 1553–1558 (1995). [CrossRef]
  5. W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69, 165407 (2004). [CrossRef]
  6. T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74, 245415 (2006). [CrossRef]
  7. Z. Ruan, and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006). [CrossRef]
  8. R. Zhou, X. Chen, S. Wang, W. Lu, Y. Zeng, H. Chen, H. Li, H. Xia, and L. Wang, “The surface plasmon resonance of metal-film nanohole arrays,” Solid State Commun. 145, 23–28 (2008). [CrossRef]
  9. C. Billaudeau, S. Collin, C. Sauvan, N. Bardou, F. Pardo, and J. L. Pelouard, “Angle-resolved transmission measurements through anisotropic two-dimensional plasmonic crystals,” Opt. Lett. 33, 165–167 (2008). [CrossRef]
  10. L. Pang, K. A. Tetz, and Y. Fainman, “Observation of the splitting of degenerate surface plasmon polariton modes in a two-dimensional metallic nanohole array,” Appl. Phys. Lett. 90, 111103 (2007). [CrossRef]
  11. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001). [CrossRef]
  12. Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007). [CrossRef]
  13. K. C. Hui, J. T. K. Wan, J. B. Xu, and H. C. Ong, “Dependence of anisotropic surface plasmon lifetimes of two-dimensional hole arrays on hole geometry,” Appl. Phys. Lett. 95, 063110 (2009). [CrossRef]
  14. P. Lalanne, J. C. Rodier, and J. P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A 7, 422–426 (2005). [CrossRef]
  15. A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007). [CrossRef]
  16. J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “The plasmonic properties of elliptical metallic hole arrays,” Appl. Phys. Lett. 94, 033101 (2009). [CrossRef]
  17. W. Kuang, A. English, Z. C. Chang, M. H. Shih, W. B. Knowlton, J. Lee, W. L. Hughes, and B. Yurke, “Cavity resonant mode in a metal film perforated with two-dimensional triangular lattice hole arrays,” Opt. Commun. 283, 4090–4093 (2010). [CrossRef]
  18. D. Pacifici, H. J. Lezec, Harry A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008). [CrossRef]
  19. S. Giudicatti, A. Valsesia, F. Marabelli, P. Colpo, and F. Rossi, “Plasmonic resonances in nanostructured gold/polymer surfaces by colloidal lithography,” Phys. Status Solidi A 207, 935–942 (2010). [CrossRef]
  20. T. W. Teperik, V. V. Popov, F. J. Garcia de Abajo, T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Mie plasmon enhanced diffraction of light from nanoporous metal surfaces,” Opt. Express 14, 11964–11971 (2006). [CrossRef]
  21. A. Taflove, and S. C. Hagness, Computational Electrodynamics—The FDTD Method, 2nd ed. (Artech House, 2000). A commercial software, Lumerical FDTD (www.lumerical.com), was used.
  22. E. D. Palik, Handbook of Optical Constants of Solids, Vol. 1 (Academic, 1980), pp. 293–294.
  23. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996). [CrossRef]
  24. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996). [CrossRef]
  25. D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Adv. 1, 032151 (2011). [CrossRef]
  26. The slight difference between the electric field distribution at the opposite interfaces is due to the field profile monitors, which collect not only the modes’ electric field, but also the reflected and transmitted components of the excitation source illuminating the upper side of the system.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited