OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1672–1679

Phase-sensitive nonclassical properties of photon-added displaced squeezed thermal states

Shuai Wang and Hong-yi Fan  »View Author Affiliations


JOSA B, Vol. 29, Issue 7, pp. 1672-1679 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001672


View Full Text Article

Enhanced HTML    Acrobat PDF (565 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the nonclassical properties of multiple-photon-added displaced squeezed thermal states (PADSTSs). Particularly, we study the dependence of those nonclassical properties on the compound phase ϕθ/2 involved in squeezing and displacement parameters. We find that the Mandel Q parameter, the quadrature squeezing, the negative volume of the Wigner function, and the fidelity between PADSTSs and displaced squeezed thermal states (DSTSs) are all periodic functions of ϕθ/2 with a period π. Without considering the displacement parameter, these quantities are all phase independent. Finally, we investigate the non-Gaussianity of PADSTSs according to the fidelity between PADSTSs and DSTSs and find that non-Gaussianity and nonclassicality have similar behavior. Thus, the non-Gaussianity induced by the photon-addition operation is essentially nonclassical.

© 2012 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.6570) Quantum optics : Squeezed states

ToC Category:
Quantum Optics

History
Original Manuscript: April 10, 2012
Manuscript Accepted: May 2, 2012
Published: June 15, 2012

Citation
Shuai Wang and Hong-yi Fan, "Phase-sensitive nonclassical properties of photon-added displaced squeezed thermal states," J. Opt. Soc. Am. B 29, 1672-1679 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-7-1672


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Dell’Anno, S. De Siena, and F. Illuminati, “Multiphoton quantum optics and quantum state engineering,” Phys. Rep. 428, 53–168 (2006), and references therein. [CrossRef]
  2. A. Kitagawa, M. Takeoka, K. Wakui, and M. Sasaki, “Effective squeezing enhancement via measurement-induced non-Gaussian operation and its application to the dense coding scheme,” Phys. Rev. A 72, 022334 (2005). [CrossRef]
  3. F. Dell’Anno, S. De Siena, L. Albano, and F. Illuminati, “Continuous-variable quantum teleportation with non-Gaussian resources,” Phys. Rev. A 76, 022301 (2007). [CrossRef]
  4. Y. Yang and F. L. Li, “Entanglement properties of non-Gaussian resources generated via photon subtraction and addition and continuous-variable quantum-teleportation improvement,” Phys. Rev. A 80, 022315 (2009). [CrossRef]
  5. F. Dell’Anno, S. De Siena, and F. Illuminati, “Realistic continuous-variable quantum teleportation with non-Gaussian resources,” Phys. Rev. A 81, 012333 (2010). [CrossRef]
  6. M. M. Wolf, G. Giedke, and J. I. Cirac, “Extremality of Gaussian quantum States,” Phys. Rev. Lett. 96, 080502 (2006). [CrossRef]
  7. M. G. Genoni and M. G. A. Paris, “Quantifying non-Gaussianity for quantum information,” Phys. Rev. A 82, 052341(2010). [CrossRef]
  8. M. S. Kim, “Recent developments in photon-level operations on travelling light fields,” J. Phys. B 41, 133001 (2008). [CrossRef]
  9. G. S. Agarwal and K. Tara, “Nonclassical properties of states generated by the excitations on a coherent state,” Phys. Rev. A 43, 492–497 (1991). [CrossRef]
  10. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and Ph. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83–86 (2006). [CrossRef]
  11. A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of light,” Science 306, 660–662 (2004). [CrossRef]
  12. R. W. Boyd, K. W. Chan, and M. N. O’Sullivan, “Quantum weirdness in the lab,” Science 317, 1874–1875 (2007). [CrossRef]
  13. A. Zavatta, V. Parigi, M. S. Kim, H. Jeong, and M. Bellini, “Experimental demonstration of the bosonic commutation relation via superpositions of quantum operations on thermal light fields,” Phys. Rev. Lett. 103, 140406 (2009). [CrossRef]
  14. J. Wenger, R. Tualle-Brouri, and P. Grangier, “Non-Gaussian statistics from individual pulses of squeezed light,” Phys. Rev. Lett. 92, 153601 (2004). [CrossRef]
  15. S. Olivares and M. G. A. Paris, “Photon subtracted states and enhancement of nonlocality in the presence of noise,” J. Opt. B 7, S392–S397 (2005). [CrossRef]
  16. A. Kitagawa, M. Takeoka, M. Sasaki, and A. Chefles, “Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states,” Phys. Rev. A 73, 042310 (2006). [CrossRef]
  17. A. Zavatta, V. Parigi, and M. Bellini, “Experimental nonclassicality of single-photon-added thermal light states,” Phys. Rev. A 75, 052106 (2007). [CrossRef]
  18. V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890 (2007). [CrossRef]
  19. S. Y. Lee and H. Nha, “Quantum state engineering by a coherent superposition of photon subtraction and addition,” Phys. Rev. A 82, 053812 (2010). [CrossRef]
  20. L. Y. Hu and H. Y. Fan, “Statistical properties of photon-subtracted squeezed vacuum in thermal environment,” J. Opt. Soc. Am. B 25, 1955–1964 (2008). [CrossRef]
  21. L. Y. Hu, X. X. Xu, Z. S. Wang, and X. F. Xu, “Photon-subtracted squeezed thermal state: nonclassicality and decoherence,” Phys. Rev. A 82, 043842 (2010). [CrossRef]
  22. X. X. Xu, L. Y. Hu, and H. Y. Fan, “Photon-added squeezed thermal states: Statistical properties and its decoherence in a photon-loss channel,” Opt. Commun. 283, 1801–1809 (2010). [CrossRef]
  23. H. Nha and H. J. Carmichael, “Proposed test of quantum nonlocality for continuous variables,” Phys. Rev. Lett. 93, 020401 (2004). [CrossRef]
  24. S. Wang, X. X. Xu, H. C. Yuan, L. Y. Hu, and H. Y. Fan, “Coherent operation of photon subtraction and addition for squeezed thermal states: analysis of nonclassicality and decoherence,” J. Opt. Soc. Am. B 28, 2149–2158 (2011). [CrossRef]
  25. Z. Z. Xin, Y. B. Duan, H. M. Zhang, M. Hirayama, and K. Matumoto, “Excited two-photon coherent state of the radiation field,” J. Phys. B 29, 4493–4506 (1996). [CrossRef]
  26. M. Matsuoka and T. Hirano, “Quantum key distribution with a single photon from a squeezed coherent state,” Phys. Rev. A 67, 042307 (2003). [CrossRef]
  27. M. Owari, M. B. Plenio, E. S. Polzik, A. Serafini, and M. M. Wolf, “Squeezing the limit: quantum benchmarks for the teleportation and storage of squeezed states,” New J. Phys. 10, 113014 (2008). [CrossRef]
  28. J. Calsamiglia, M. Aspachs, R. Munoz-Tapia, and E. Bagan, “Phase-covariant quantum benchmarks,” Phys. Rev. A 79, 050301 (2009). [CrossRef]
  29. D. Gottesman, A. Kitaev, and J. Preskill, “Encoding a qubit in an oscillator,” Phys. Rev. A 64, 012310 (2001). [CrossRef]
  30. K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7, 13–16 (2010). [CrossRef]
  31. A. Furusawa, J. L. Søensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998). [CrossRef]
  32. W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, Hans-A. Bachor, T. Symul, and P. K. Lam, “Experimental investigation of continuous-variable quantum teleportation,” Phys. Rev. A 67, 032302 (2003). [CrossRef]
  33. T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, “Quantum teleportation of light beams,” Phys. Rev. A 67, 033802 (2003). [CrossRef]
  34. N. Takei, H. Yonezawa, T. Aoki, and A. Furusawa, “High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables,” Phys. Rev. Lett. 94, 220502 (2005). [CrossRef]
  35. X. Jia, X. Su, Q. Pan, J. Gao, C. Xie, and K. Peng, “Experimental demonstration of unconditional entanglement swapping for continuous variables,” Phys. Rev. Lett. 93, 250503 (2004). [CrossRef]
  36. O. Glökl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova, and G. Leuchs, “Experiment towards continuous-variable entanglement swapping: Highly correlated four-partite quantum state,” Phys. Rev. A 68, 012319 (2003). [CrossRef]
  37. S. Wang, H. Y. Fan, and L. Y. Hu, “Photon-number distributions of non-Gaussian states generated by photon subtraction and addition,” J. Opt. Soc. Am. B 29, 1020–1028 (2012). [CrossRef]
  38. H. Y. Fan, “Newton–Leibniz integration for ket–bra operators in quantum mechanics and derivation of entangled state representations,” Ann. Phys. 321, 480–494 (2006). [CrossRef]
  39. H. Y. Fan, “Newton–Leibniz integration for ket–bra operators in quantum mechanics (IV)—integrations within Weyl ordered product of operators and their applications,” Ann. Phys. 323, 500–526 (2008). [CrossRef]
  40. H. Y. Fan and Y. Fan, “Weyl ordering for entangled state representation,” Int. J. Mod. Phys. A 17, 701–708 (2002). [CrossRef]
  41. H. Fearn and M. J. Colletta, “Representations of squeezed states with thermal noise,” J. Mod. Opt. 35, 553–564 (1988). [CrossRef]
  42. C. K. Hong and L. Mandel, “Generation of higher-order squeezing of quantum electromagnetic fields,” Phys. Rev. A 32, 974–982 (1985). [CrossRef]
  43. J. Lee, J. Kim, and H. Nha, “Demonstrating higher-order nonclassical effects by photon-added classical states: realistic schemes,” J. Opt. Soc. Am. B 26, 1363–1369 (2009). [CrossRef]
  44. E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932). [CrossRef]
  45. H. Y. Fan and H. R. Zaidi, “Application of IWOP technique to the generalized Weyl correspondence,” Phys. Lett. A 124, 303–307 (1987). [CrossRef]
  46. R. R. Puri, Mathematical Methods of Quantum Optics (Springer-Verlag, 2001), Appendix A.
  47. A. Kenfack and K. Zyczkowski, “Negativity of the Wigner function as an indicator of non-classicality,” J. Opt. B 6, 396–404 (2004). [CrossRef]
  48. M. G. Genoni, M. G. A. Paris, and K. Banaszek, “Quantifying the non-Gaussian character of a quantum state by quantum relative entropy,” Phys. Rev. A 78, 060303 (2008). [CrossRef]
  49. M. G. Genoni, M. G. A. Paris, and K. Banaszek, “Measure of the non-Gaussian character of a quantum state,” Phys. Rev. A 76, 042327 (2007). [CrossRef]
  50. A. Ferraro, S. Olivares, and M. G. A. Paris, Gaussian States in Quantum Information (Bibliopolis, 2005).
  51. M. Barbieri, N. Spagnolo, M. G. Genoni, F. Ferreyrol, R. Blandino, M. G. A. Paris, P. Grangier, and R. Tualle-Brouri, “Non-Gaussianity of quantum states: an experimental test on single-photon-added coherent states,” Phys. Rev. A 82, 063833 (2010). [CrossRef]
  52. L. Y. Hu and Z. M. Zhang, “Nonclassicality and decoherence of photon-added squeezed thermal state in thermal environment,” J. Opt. Soc. Am. B 29, 529–537 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited