OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1680–1684

Towards an experimental realization of affinely transformed linearized quantum electrodynamics vacuum via inverse homogenization

Tom G. Mackay and Akhlesh Lakhtakia  »View Author Affiliations


JOSA B, Vol. 29, Issue 7, pp. 1680-1684 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001680


View Full Text Article

Enhanced HTML    Acrobat PDF (221 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Within the framework of quantum electrodynamics (QED), vacuum is a nonlinear medium that can be linearized for a rapidly time-varying electromagnetic field with a small amplitude subjected to a magnetostatic field. The linearized QED vacuum is a uniaxial dielectric-magnetic medium for which the degree of anisotropy is exceedingly small. By implementing an affine transformation of the spatial coordinates, the degree of anisotropy may become sufficiently large as to be readily perceivable. The inverse Bruggeman formalism can be implemented to specify a homogenized composite material (HCM) that is electromagnetically equivalent to the affinely transformed QED vacuum. This HCM can arise from remarkably simple component materials, for example, two isotropic dielectric materials and two isotropic magnetic materials, randomly distributed as oriented spheroidal particles.

© 2012 Optical Society of America

OCIS Codes
(160.1245) Materials : Artificially engineered materials
(260.2065) Physical optics : Effective medium theory
(160.3918) Materials : Metamaterials

ToC Category:
Materials

History
Original Manuscript: January 19, 2012
Manuscript Accepted: February 10, 2012
Published: June 18, 2012

Citation
Tom G. Mackay and Akhlesh Lakhtakia, "Towards an experimental realization of affinely transformed linearized quantum electrodynamics vacuum via inverse homogenization," J. Opt. Soc. Am. B 29, 1680-1684 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-7-1680


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  2. S. L. Adler, “Vacuum birefringence in a rotating magnetic field,” J. Phys. A 40, F143–F152 (2007). [CrossRef]
  3. S. L. Adler, “Vacuum birefringence in a rotating magnetic field: corrigendum,” J. Phys. A 40, 5767 (2007). [CrossRef]
  4. Z. Bialynicka-Birula and I. Bialynicki-Birula, “Nonlinear effects in quantum electrodynamics. Photon propagation and photon splitting in an external field,” Phys. Rev. D 2, 2341–2345 (1970). [CrossRef]
  5. S. L. Adler, “Photon splitting and photon dispersion in a strong magnetic field,” Ann. Phys. 67, 599–647 (1971). [CrossRef]
  6. E. Iacopini and E. Zavattini, “Experimental method to detect the vacuum birefringence induced by a magnetic field,” Phys. Lett. B 85, 151–154 (1979). [CrossRef]
  7. E. Zavattini, G. Zavattini, G. Ruoso, E. Polacco, E. Milotti, M. Karuza, U. Gastaldi, G. Di Domenico, F. Della Valle, R. Cimino, S. Carusotto, G. Cantatore, and M. Bregant, “Experimental observation of optical rotation generated in vacuum by a magnetic field,” Phys. Rev. Lett. 96, 110406 (2006). [CrossRef]
  8. E. Zavattini, G. Zavattini, G. Ruoso, E. Polacco, E. Milotti, M. Karuza, U. Gastaldi, G. Di Domenico, F. Della Valle, R. Cimino, S. Carusotto, G. Cantatore, and M. Bregant, “Editorial note: Experimental observation of optical rotation generated in vacuum by a magnetic field [Phys. Rev. Lett. 96, 110406 (2006)],” Phys. Rev. Lett. 99, 129901(E) (2007). [CrossRef]
  9. T. G. Mackay and A. Lakhtakia, “Towards a realization of Schwarzschild-(anti-)de Sitter spacetime as a particulate metamaterial,” Phys. Rev. B 83, 195424 (2011). [CrossRef]
  10. T. H. Anderson, T. G. Mackay, and A. Lakhtakia, “Towards a cylindrical cloak via inverse homogenization,” J. Opt. Soc. Am. A 29, 239–243 (2012). [CrossRef]
  11. H. S. M. Coxeter, Introduction to Geometry, 2nd ed. (Wiley, 1989).
  12. L. Li, J. Chandezon, G. Granet, and J.-P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers,” Appl. Opt. 38, 304–313 (1999). [CrossRef]
  13. M. Yan, W. Yan, and M. Qiu, “Invisibility cloaking by coordinate transformation,” Progr. Opt. 52, 261–304 (2009). [CrossRef]
  14. M. N. Chernodub, “Superconductivity of QCD vacuum in strong magnetic field,” Phys. Rev. D 82, 085011 (2010). [CrossRef]
  15. I. I. Smolyaninov, “Vacuum in a strong magnetic field as a hyperbolic metamaterial,” Phys. Rev. Lett. 107, 253903 (2011). [CrossRef]
  16. A. Lakhtakia and T. G. Mackay, “Integral equation for scattering of light by a strong magnetostatic field in vacuum,” Electromagnetics 27, 341–354 (2007). [CrossRef]
  17. W. Heisenberg and H. Euler, “Folgerungen aus der Diracschen Theorie des Positrons,” Z. Phys. 98, 714–732 (1936). [CrossRef]
  18. J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82, 664–679 (1951). [CrossRef]
  19. I. V. Lindell, Methods for Electromagnetic Field Analysis(Clarendon, 1992).
  20. G. W. Milton, M. Briane, and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant form,” New J. Phys. 8, 248 (2006). [CrossRef]
  21. W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Maxwell Garnett and Bruggeman formalisms for a particulate composite with bianisotropic host medium,” Microw. Opt. Technol. Lett. 15, 263–266 (1997). [CrossRef]
  22. W. S. Weiglhofer, A. Lakhtakia, and B. Michel, “Correction to ‘Maxwell Garnett and Bruggeman formalisms for a particulate composite with bianisotropic host medium’ ,” Microw. Opt. Technol. Lett. 22, 221 (1999). [CrossRef]
  23. T. G. Mackay and A. Lakhtakia, Electromagnetic Anisotropy and Bianisotropy: A Field Guide (World Scientific, 2010).
  24. A. Lakhtakia, “Orthogonal symmetries of polarizability dyadics of bianisotropic ellipsoids,” Microw. Opt. Technol. Lett. 27, 175–177 (2000). [CrossRef]
  25. W. S. Weiglhofer, “On the inverse homogenization problem of linear composite materials,” Microw. Opt. Technol. Lett. 28, 421–423 (2001). [CrossRef]
  26. E. Cherkaev, “Inverse homogenization for evaluation of effective properties of a mixture,” Inverse Probl. 17, 1203–1218 (2001). [CrossRef]
  27. T. G. Mackay and A. Lakhtakia, “Determination of constitutive and morphological parameters of columnar thin films by inverse homogenization,” J. Nanophoton. 4, 041535 (2010). [CrossRef]
  28. S. S. Jamaian and T. G. Mackay, “On limitations of the Bruggeman formalism for inverse homogenization,” J. Nanophoton. 4, 043510 (2010). [CrossRef]
  29. T. G. Mackay and W. S. Weiglhofer, “Homogenization of biaxial composite materials: dissipative anisotropic properties,” J. Opt. A 2, 426–432 (2000). [CrossRef]
  30. A. Alù, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007). [CrossRef]
  31. G. Lovat, P. Burghignoli, F. Capolino, and D. R. Jackson, “Combinations of low/high permittivity and/or permeability substrates for highly directive planar metamaterial antennas,” IET Microw. Antennas Propagat. 1, 177–183 (2007). [CrossRef]
  32. M. N. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ϵ and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83, 115112 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited